Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 16;11(1):110.
doi: 10.1186/s40104-020-00512-8.

Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance

Affiliations
Review

Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance

Massimo Bionaz et al. J Anim Sci Biotechnol. .

Abstract

High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.

Keywords: Absorption; Dairy cow; Dietary fatty acids; Intestine; Liver; Metabolism; Performance; Transcription factors; Transport.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Transcript abundance of various gene isoforms involved in fatty acid absorption in jejunum, liver, and mammary tissue from Chinese Holstein lactating cows [54]. Data were downloaded from Gene Expression Omnibus, dataset GSE78524. Data are mean ± SD of reads per kilo base per million mapped reads (RPKM) of all 18 cows
Fig. 2
Fig. 2
Model summarizing in dairy cows the absorption of fatty acids by enterocytes and their utilization by peripheral tissues (especially liver) with indicated enzymes and other proteins/complexes involved. As discussed in detail in the review, the model is mostly based on data obtain from monogastric species together with available data in ruminants, including the transcription abundance of the various genes presented in Fig. 1. Abbreviations: Alb, albumin; CM, chylomicron; CM-R, chylomicron remnants; DAG, diacylglycerol; ER, endoplasmic reticulum; FA, fatty acids; FFA, free fatty acids; KB, ketone bodies; LCFA, long chain fatty acids; LD, lipid droplets; LP, lipoprotein(s); LPL, lipoprotein lipase; MCFA, medium chain fatty acids; NEFA, non-esterified fatty acids; TAG, triacylglycerol; TAG-rich LP, TAG-rich lipoproteins; VFA, volatile fatty acids; VLDL, very low density lipoproteins

Similar articles

Cited by

References

    1. Palmquist DL, Jenkins TC. A 100-Year Review: Fat feeding of dairy cows. J Dairy Sci. 2017;100(12):10061–10077. doi: 10.3168/jds.2017-12924. - DOI - PubMed
    1. Santos JE, Bisinotto RS, Ribeiro ES, Lima FS, Greco LF, Staples CR, et al. Applying nutrition and physiology to improve reproduction in dairy cattle. Soc Reprod Fertil Suppl. 2010;67:387–403. - PubMed
    1. Loften JR, Linn JG, Drackley JK, Jenkins TC, Soderholm CG, Kertz AF. Invited review: palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci. 2014;97(8):4661–4674. doi: 10.3168/jds.2014-7919. - DOI - PubMed
    1. Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques. J Anim Sci. 2015;93(12):5531–53. - PubMed
    1. Bionaz M, Chen S, Khan MJ, Loor JJ. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. PPAR Res. 2013;2013:684159. - PMC - PubMed

LinkOut - more resources