Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan:263:128135.
doi: 10.1016/j.chemosphere.2020.128135. Epub 2020 Aug 31.

Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota

Affiliations
Review

Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota

Shamali De Silva et al. Chemosphere. 2021 Jan.

Abstract

Given the large size of the world road network, the land area affected by vehicular emissions is extensive. This review provides the first global picture of the relationships between vehicular emitted potentially toxic elements, roadside soils, and risks to associated biota. The following potentially toxic elements that accumulate in roadside soils have been examined in this review: As, Co, Cr, Cu, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Se, Sb, Sn, Sr, Ti and Zn. The meta-analysis undertaken demonstrated an increase in concentrations of Cd, Pb, Zn, Pt, Pd and Rh in roadside soils compared to the mean global crustal concentrations. Positive correlations between potentially toxic element concentrations in roadside soil, plants, microbes, and animals were observed. Roadside studies have found increased potentially toxic element concentrations in plants and animals with increasing proximity to roads. The mean concentrations of Pb in roadside plants and vertebrates were at values above the World Health Organisation guidelines. Research has shown a range of impacts of potentially toxic elements in roadside soils on microbial activity including decreased litter decomposition, nitrogen fixation, nutrient cycling and enzyme synthesis. However, aside from the impact on microbial communities, there has been little research investigating the impacts of roadside soil elements on the associated biota. Thus, there is a need for research that investigates the toxicity of elements in roadside soils to plants and animals and to investigate the transfer of roadside elements through the food chain, and thus, risks posed to human health and the environment.

Keywords: Animals; Metals; Microbes; Plants; Soil; Vehicular emissions.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources