Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986;1(4):214-29.

Experimental basis of metabolic imaging of the myocardium with radioiodinated aromatic free fatty acids

Affiliations
  • PMID: 3330448
Review

Experimental basis of metabolic imaging of the myocardium with radioiodinated aromatic free fatty acids

S N Reske et al. Am J Physiol Imaging. 1986.

Abstract

For the investigation of myocardial perfusion and left ventricular pump function, advanced radioisotopic techniques have been established. New developments in radiopharmacology and single-photon emission computed tomography have recently enabled the investigation of parameters of regional energy metabolism in well defined areas of the heart muscle. For this purpose, various iodine (123I)-labeled free fatty acids (FFA) have been synthesized. The diagnostic application of labeled FFA in heart disease may be important, since FFA are the preferred substrates for cardiac energy production at rest in the fasting state. In addition, regional myocardial FFA uptake and regional myocardial blood flow are tightly coupled in normal myocardium with beta-oxidation which is extremely sensitive to oxygen deprivation. This article outlines the basic physiologic pathways of FFA in normal and ischemic myocardium and reviews the results of animal experiments validating the application of these principles for metabolic imaging of the heart by means of the aromatic radioiodinated FFA, 15-(p-iodophenyl)pentadecanoic acid. In addition, the development, physiologic properties, and potential applications of a new generation of 3-methyl-substituted radioiodinated fatty acids that show high myocardial uptake but prolonged retention are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources