Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 31;71(22):7286-7300.
doi: 10.1093/jxb/eraa392.

Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars

Affiliations

Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars

Caetano Albuquerque et al. J Exp Bot. .

Abstract

Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately -0.7 MPa and -1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = -1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.

Keywords: Vitis; Anatomy; drought; ecophysiology; gas exchange; leaf hydraulics; micro-CT; modeling.

PubMed Disclaimer

Publication types

LinkOut - more resources