Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 5:248:119259.
doi: 10.1016/j.saa.2020.119259. Epub 2020 Nov 30.

Identification of Aspergillus species in human blood plasma by infrared spectroscopy and machine learning

Affiliations

Identification of Aspergillus species in human blood plasma by infrared spectroscopy and machine learning

Omar Anwar Elkadi et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Invasive Aspergillosis is a challenging infection that requires convenient, efficient, and cost-effective diagnostics. This study addresses the potential of infrared spectroscopy to satisfy this clinical need with the aid of machine learning. Two models, based on Partial Least Squares-Discriminant Analysis (PLS-DA), have been trained by a set of infrared spectral data of 9 Aspergillus-spiked and 7 Aspergillus-free plasma samples, and a set of 200 spectral data simulated by oversampling these 16 samples. Two further models have also been trained by the same sets but with auto-scaling performed prior to PLS-DA. These models were assessed using 45 mock samples, simulating the challenging samples of patients at risk of Invasive Aspergillosis, including the presence of drugs (9 tested) and other common pathogens (5 tested) as potential confounders. The simple model shows good prediction performance, yielding a total accuracy of 84.4%, while oversampling and autoscaling improved this accuracy to 93.3%. The results of this study have shown that infrared spectroscopy can identify Aspergillus species in blood plasma even in presence of potential confounders commonly present in blood of patients at risk of Invasive Aspergillosis.

Keywords: Aspergillosis; Infrared spectroscopy; Laboratory diagnosis; Machine learning; Plasma.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources