Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May:200:101971.
doi: 10.1016/j.pneurobio.2020.101971. Epub 2020 Dec 9.

Microglial innate memory and epigenetic reprogramming in neurological disorders

Affiliations
Review

Microglial innate memory and epigenetic reprogramming in neurological disorders

Ricardo Martins-Ferreira et al. Prog Neurobiol. 2021 May.

Abstract

Microglia are myeloid-derived cells recognized as brain-resident macrophages. They act as the first and main line of immune defense in the central nervous system (CNS). Microglia have high phenotypic plasticity and are essential for regulating healthy brain homeostasis, and their dysregulation underlies the onset and progression of several CNS pathologies through impaired inflammatory responses. Aberrant microglial activation, following an inflammatory insult, is associated with epigenetic dysregulation in various CNS pathologies. Emerging data suggest that certain stimuli to myeloid cells determine enhanced or attenuated responses to subsequent stimuli. These phenomena, generally termed innate immune memory (IIM), are highly dependent on epigenetic reprogramming. Microglial priming has been reported in several neurological diseases and corresponds to a state of increased permissiveness or exacerbated response, promoted by continuous exposure to a chronic pro-inflammatory environment. In this article, we provide extensive evidence of these epigenetic-mediated phenomena under neurological conditions and discuss their contribution to pathogenesis and their clinical implications, including those concerning potential novel therapeutic approaches.

Keywords: DNA methylation; Epigenetics; Histone modifications; Innate immune memory; Microglia; Neurological disease.

PubMed Disclaimer

Publication types

LinkOut - more resources