Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 18:11:589188.
doi: 10.3389/fimmu.2020.589188. eCollection 2020.

Granzyme B Expression in Visceral Adipose Tissue Associates With Local Inflammation and Glyco-Metabolic Alterations in Obesity

Affiliations

Granzyme B Expression in Visceral Adipose Tissue Associates With Local Inflammation and Glyco-Metabolic Alterations in Obesity

Flavia Agata Cimini et al. Front Immunol. .

Abstract

Granzyme B (GrB) is a serine protease produced by immune and non-immune cells, able to promote multiple processes, like apoptosis, inflammation, extracellular matrix remodeling and fibrosis. GrB expression in visceral adipose tissue (VAT) was associated with tissue damage, local inflammation and insulin resistance in obesity murine model, but there is no data in humans. Aim of this study was to explore the expression of GrB in VAT from obese subjects in relation to adipose tissue injury, inflammation, metabolic alterations and GrB circulating levels. For this purpose, 85 obese individuals undergoing bariatric surgery and 35 healthy subjects (as control) were recruited at Sapienza University, Rome, Italy. Study participants underwent clinical work-up and routine biochemistry. mRNA expression of GrB in VAT and of a panel of VAT inflammatory markers was analyzed by real-time PCR. Serum GrB levels were measured by Elisa Affymetrix EBIO. We observed that 80% of obese patients expressed GrB mRNA in VAT, and GrB VAT expression was associated with the presence of local inflammation and glucose homeostasis alterations. Moreover, GrB serum levels, which were higher in obese subjects compared to non-obese healthy individuals, were associated with GrB expression in VAT and glyco-metabolic impairment. Our data show, for the first time in humans, that obese subjects with "sick" fat and altered glucose tolerance exhibit GrB expression in VAT, and suggest that GrB might contribute to obesity-related VAT inflammatory remodeling and glucose homeostasis dysregulation. Moreover, increased circulating GrB levels might represent a possible peripheral marker of VAT dysfunction in metabolic diseases.

Keywords: Granzyme B; glyco-metabolic alterations; inflammation; obesity; visceral adipose tissue.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison between Granzyme B (GrB) expression in visceral adipose tissue (VAT) from normo-glycemic obese subjects (n= 62) and IFG/T2D obese subjects (n=23). GrB mRNA expression levels are shown as arbitrary units (A.U.). Data are shown as mean ± standard deviation. *p < 0.05.
Figure 2
Figure 2
The potential contribution of Granzyme B (GrB) to the inflammation and dysfunction of adipose tissue in obese subjects. GrB, produced by different adipose tissue infiltrating inflammatory cells, may contribute to the promotion of the apoptotic, inflammatory and extracellular matrix (ECM) remodeling processes occurring in adipose tissue in obesity, leading to adipose tissue fibrosis and dysfunction, and driving up to glyco-metabolic impairment.

References

    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (2017) 390(10113):2627–42. 10.1016/S0140-6736(17)32129-3 - DOI - PMC - PubMed
    1. Cimini FA, Barchetta I, Ciccarelli G, Leonetti F, Silecchia G, Chiappetta C, et al. Adipose tissue remodelling in obese subjects is a determinant of presence and severity of fatty liver disease. Diabetes Metab Res Rev (2020) 29:e3358. 10.1002/dmrr.3358 - DOI - PubMed
    1. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol (2020) 29(10):1607. 10.3389/fphys.2019.01607 - DOI - PMC - PubMed
    1. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol (2018) 9(1):1–58. 10.1002/cphy.c170040 - DOI - PMC - PubMed
    1. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest (2011) 121(6):2094–101. 10.1172/JCI45887 - DOI - PMC - PubMed

Publication types