Emerging Materials for Neuromorphic Devices and Systems
- PMID: 33319174
- PMCID: PMC7725950
- DOI: 10.1016/j.isci.2020.101846
Emerging Materials for Neuromorphic Devices and Systems
Abstract
Neuromorphic devices and systems have attracted attention as next-generation computing due to their high efficiency in processing complex data. So far, they have been demonstrated using both machine-learning software and complementary metal-oxide-semiconductor-based hardware. However, these approaches have drawbacks in power consumption and learning speed. An energy-efficient neuromorphic computing system requires hardware that can mimic the functions of a brain. Therefore, various materials have been introduced for the development of neuromorphic devices. Here, recent advances in neuromorphic devices are reviewed. First, the functions of biological synapses and neurons are discussed. Also, deep neural networks and spiking neural networks are described. Then, the operation mechanism and the neuromorphic functions of emerging devices are reviewed. Finally, the challenges and prospects for developing neuromorphic devices that use emerging materials are discussed.
Keywords: Devices; Electronic Materials; Materials Design; Memory Structure.
© 2020 The Author(s).
Figures











References
-
- Abbott L.F., Nelson S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. 2000;3:1178–1183. - PubMed
-
- Abeles M., Bergman H., Margalit E., Vaadia E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 1993;70:1629–1638. - PubMed
-
- Abraham W.C. Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 2008;9:387. - PubMed
-
- Alessandri C., Pandey P., Abusleme A., Seabaugh A. Switching dynamics of ferroelectric Zr-Doped HfO2. IEEE Electron Device Lett. 2018;39:1780–1783.
-
- Ali T., Polakowski P., Büttner T., Kämpfe T., Rudolph M., Pätzold B., Hoffmann R., Czernohorsky M., Kühnel K., Steinke P. Theory and experiment of Antiferroelectric (AFE) Si-Doped Hafnium Oxide (HSO) enhanced floating-gate memory. IEEE Trans. Electron Devices. 2019;66:3356–3364.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources