Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 12;6(10):5571-5587.
doi: 10.1021/acsbiomaterials.0c00472. Epub 2020 Sep 21.

SiCxNyOz Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation

Affiliations

SiCxNyOz Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation

Nitu Bhaskar et al. ACS Biomater Sci Eng. .

Abstract

For biomedical applications, a number of ceramic coatings have been investigated, but the interactions with the components of living system remain unexplored for oxycarbonitride coatings. While addressing this aspect, the present study aims to provide an understanding of the biocompatibility of novel SiCxNyOz coatings that could validate the hypothesis that such coatings may not only enhance the cell-material interaction by re-endothelialization but also can help to reduce bacterial adhesion and activation of blood cells. This work reports the physicochemical properties, hemocompatibility, endothelialization, and antibacterial properties of novel amorphous SiCxNyOz coatings deposited on commercial pure titanium (Ti) by radiofrequency (RF) magnetron sputtering at varied nitrogen (N2) flow rates. A comparison is made with diamond-like carbon (DLC) coatings, which are clinically used. The surface roughness, surface wettability, nanoscale hardness, and surface energy of SiCxNyOz coatings were found to be dependent on the nitrogen (N2) flow rate. Importantly, the as-deposited SiCxNyOz coatings exhibited much better nanoscale hardness and scratch resistance than DLC coatings. Furthermore, Raman spectroscopy analysis of the SiCxNyOz coating deposited on Ti showed a change in the graphitic/disordered carbon content. Cytocompatibility and hemocompatibility properties of the as-deposited SiCxNyOz coating were evaluated using the Mus musculus lymphoid endothelial cell line (SVEC4-10) and rabbit blood in vitro. WST-1 assay analysis showed that these coatings, when compared to DLC, exhibited a better proliferation of endothelial cells, which can potentially result in improved surface endothelialization. Furthermore, qualitative and quantitative analyses of immunofluorescence images revealed a dense cellular layer of SVEC4-10 on SiCxNyOz coatings, deposited at 15 and 30 sccm nitrogen flow rates. As far as compatibility with rabbit blood is concerned, the hemolysis of the SiCxNyOz coatings was less than 4%, with slightly lower values for coatings deposited without N2 flow. The SiCxNyOz coatings support less platelet adhesion and aggregation, with no signature of morphological deformation, as compared to the uncoated titanium substrate or DLC coatings. Furthermore, SiCxNyOz coatings were also found to be effectively extending the blood coagulation time for a period of 60 min. The antimicrobial study of as-deposited SiCxNyOz coatings on E. coli and S. aureus bacteria revealed the effective inhibition of bacterial proliferation after 24 h of culture. An attempt has been made to explain the cyto- and hemocompatibility properties with antimicrobial efficacy of coatings in terms of the variation in the coating composition and surface energy. Taken together, we conclude that SiC1.3N0.76O0.87 coating having a roughness of 17 nm and a surface free energy of 54.0 ± 0.7 mN/m can exhibit the best combination of hardness, elastic modulus, scratch resistance, cytocompatibility, hemocompatibility, and bactericidal properties.

Keywords: SiCxNyOz, hemocompatibility; antibacterial; cytocompatibility; titanium coatings.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources