Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb:119:111599.
doi: 10.1016/j.msec.2020.111599. Epub 2020 Oct 8.

Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis

Affiliations

Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis

Salma E El-Habashy et al. Mater Sci Eng C Mater Biol Appl. 2021 Feb.

Abstract

Hydroxyapatite nanoparticles (HApN) are largely employed as osteogenic inorganic material. Inorganic/polymeric hybrid nanostructures can provide versatile bioactivity for superior osteogenicity, particularly as nanoparticles. Herein, we present hybrid biomaterial-based hydroxyapatite/polycaprolactone nanoparticles (HAp/PCL NPs) realized using simple preparation techniques to augment HApN osteogenicity. Using wet chemical precipitation, we optimized HApN crystalline properties utilizing a 23-factorial design. Optimized HApN exhibited typical Ca/P elemental ratio with high reaction yield. Surface area analysis revealed their mesoporous nature and high surface area. Hybrid HAp/PCL NPs prepared using direct emulsification-solvent evaporation maintained HApN crystallinity with no observed chemical interactions. To the best of our knowledge, we are the first to elaborate the biocompatibility and osteogenicity of nanoparticulate hybrid HAp/PCL. Hybrid HAp/PCL NPs outperformed HApN regarding mesenchymal cell proliferation and osteodifferentiation with reduction of possible cytotoxicity. Unlike HApN, hybrid HAp/PCL NPs presented moderate expression of early osteogenic markers, Runx-2 and osteopontin and significantly elevated expression of the late osteogenic marker, bone sialoprotein after 10-day culture. Our results indicate that hybrid bioactive HAp/PCL NPs could offer a more prominent osteogenic potential than plain HApN for bone regenerative applications as a standalone nanoplatform or as part of complex engineered systems.

Keywords: Bone regeneration; Hydroxyapatite crystallinity; Inorganic/polymer composites; Mesenchymal stem cells; Osteodifferentiation.

PubMed Disclaimer

LinkOut - more resources