Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;588(7838):408-413.
doi: 10.1038/s41586-020-3009-y. Epub 2020 Dec 16.

Half-minute-scale atomic coherence and high relative stability in a tweezer clock

Affiliations
Free article

Half-minute-scale atomic coherence and high relative stability in a tweezer clock

Aaron W Young et al. Nature. 2020 Dec.
Free article

Abstract

The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology1, simulation2 and information3. However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems2,4-7. Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms8-10, and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence. With this approach, we achieve trapping and optical-clock excited-state lifetimes exceeding 40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale atomic coherence on an optical-clock transition, corresponding to quality factors well in excess of 1016. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is comparable with that of leading atomic systems, which use optical lattices to interrogate many thousands of atoms in parallel11,12. The result is a relative fractional frequency stability of 5.2(3) × 10-17τ-1/2 (where τ is the averaging time in seconds) for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout that are available in this system, these results pave the way towards long-lived engineered entanglement on an optical-clock transition13 in tailored atom arrays.

PubMed Disclaimer

Comment in

References

    1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
    1. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
    1. Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).
    1. Saffman, M., Walker, T. G. & Molmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
    1. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

Publication types