Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 18;15(1):697-701.
doi: 10.1515/med-2020-0203. eCollection 2020.

72 hour Holter monitoring, 7 day Holter monitoring, and 30 day intermittent patient-activated heart rhythm recording in detecting arrhythmias in cryptogenic stroke patients free from arrhythmia in a screening 24 h Holter

Affiliations

72 hour Holter monitoring, 7 day Holter monitoring, and 30 day intermittent patient-activated heart rhythm recording in detecting arrhythmias in cryptogenic stroke patients free from arrhythmia in a screening 24 h Holter

Andrzej Kułach et al. Open Med (Wars). .

Abstract

Introduction: According to recent studies, silent atrial fibrillation (AF) is a common cause of cryptogenic ischemic stroke (CIS). 12-lead electrocardiogram (ECG) and 24 h Holter are not efficient to reveal an occult arrhythmic cause of stroke.

Objectives: The aim of the study was to evaluate 72 h Holter, 7 day Holter monitoring, and intermittent single-lead ECG recording in patients with CIS to identify cases with the arrhythmic cause of stroke in patients with CIS in whom 24 h ECG Holter was free from arrhythmia.

Methods: 72 patients (aged 60 ± 9 years, 44 males) with CIS and no arrhythmic findings in 24 h Holter were enrolled. All patients had 7 day Holter monitoring and received handheld ECG recorder (CheckMe, Viatom) for ambulatory 30 ± 3 days ECG recording. AF, supraventricular tachycardia (SVT runs of ≥5 QRS), and other arrhythmias were assessed in the first 72 h of Holter recording, in 7 day-recording, and in handheld ECG strips.

Results: 72 h-recording revealed AF in four cases (5.6%) and SVT in 18 (25%) cases. 7 day Holter confirmed AF in seven patients (10%) and SVT in 27 patients (37.5%). There was no difference in regards to CHADS2VASc score between patients with SVT and non-arrhythmic group (3.6 ± 1.1 vs 3.4 ± 1.6; p = NS). Symptoms did not correlate with findings. Patient-activated handheld ECG recorders were used with good compliance. The mean number of recordings was 49 ± 30. Except for PACs, there was only one case of AF documented in 3,531 strips.

Conclusions: 7 day Holter performs better than 72 h and reveals supraventricular arrhythmias in every third and AF in 10% of CIS patients who were free from arrhythmia in 24 h ECG monitoring. 30 day intermittent ECG monitor does not yield diagnostic value in CIS.

Keywords: Holter ECG; SVT runs; atrial fibrillation; cryptogenic ischemic stroke; patient-activated ECG recorder; supraventricular arrhythmia.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: Authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Incidence of SVT runs and AF in 72 h and 7 days Holter in cerebral ischemic stroke survivors.

References

    1. Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, et al. Oxford Vascular Study. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015;14:903–13. - PMC - PubMed
    2. Li L, Yiin GS, Geraghty OC, Schulz W, Kuker W, Mehta Z. et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015;14:903–13. Oxford Vascular Study . - PMC - PubMed
    1. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST Stroke. 1993;24:35–41. - PubMed
    2. Adams, Jr HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST Stroke. 1993;24:35–41. - PubMed
    1. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O'Donnell MJ, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13:429–38. - PubMed
    2. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O'Donnell MJ. et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13:429–38. - PubMed
    1. Kishore A, Vail A, Majid A, Dawson J, Lees KR, Tyrrell PJ, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke. 2014;45:520–6. - PubMed
    2. Kishore A, Vail A, Majid A, Dawson J, Lees KR, Tyrrell PJ. et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke. 2014;45:520–6. - PubMed
    1. Ziegler PD, Glotzer TV, Daoud EG, Singer DE, Ezekowitz MD, Hoyt RH, et al. Detection of previously undiagnosed atrial fibrillation in patients with stroke risk factors and usefulness of continuous monitoring in primary stroke prevention. Am J Cardiol. 2012;110:1309–14. - PubMed
    2. Ziegler PD, Glotzer TV, Daoud EG, Singer DE, Ezekowitz MD, Hoyt RH. et al. Detection of previously undiagnosed atrial fibrillation in patients with stroke risk factors and usefulness of continuous monitoring in primary stroke prevention. Am J Cardiol. 2012;110:1309–14. - PubMed

LinkOut - more resources