Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades
- PMID: 33337098
- DOI: 10.1111/1541-4337.12576
Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades
Abstract
Foodborne pathogen contamination has become a severe threat to human health. Traditional methods for foodborne pathogen detection have several disadvantages, including long detection time, low sensitivity, and low selectivity. The emergence of multiple excellent nanomaterials enables the construction of novel biosensors for foodborne pathogen detection. Based on the outstanding properties of nanomaterials, the novel biosensors possess the advantages of sensitivity, specificity, rapidity, accuracy, and simplicity. The present review comprehensively summarizes the advanced biosensors, including electrochemical, colorimetric, fluorescent, and surface enhanced Raman scattering biosensors for sensing key foodborne pathogens in recent decades. Furthermore, several issues are identified for further exploration, and possible directions for the development of biosensors are discussed.
Keywords: biosensor; detection; food safety; nanomaterials; pathogens.
© 2020 Institute of Food Technologists®.
Similar articles
-
Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors.Anal Biochem. 2024 Oct;693:115600. doi: 10.1016/j.ab.2024.115600. Epub 2024 Jul 2. Anal Biochem. 2024. PMID: 38964698 Review.
-
Electroanalytical biosensors and their potential for food pathogen and toxin detection.Anal Bioanal Chem. 2008 May;391(2):455-71. doi: 10.1007/s00216-008-1876-4. Epub 2008 Feb 17. Anal Bioanal Chem. 2008. PMID: 18283441 Review.
-
A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors.Crit Rev Biomed Eng. 2024;52(3):17-40. doi: 10.1615/CritRevBiomedEng.2023049469. Crit Rev Biomed Eng. 2024. PMID: 38523439 Review.
-
Advancements in magnetic nanomaterial-assisted sensitive detection of foodborne bacteria: Dual-recognition strategies, functionalities, and multiplexing applications.Food Chem. 2025 Jun 30;478:143626. doi: 10.1016/j.foodchem.2025.143626. Epub 2025 Feb 27. Food Chem. 2025. PMID: 40049130 Review.
-
Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection.Molecules. 2024 Sep 17;29(18):4415. doi: 10.3390/molecules29184415. Molecules. 2024. PMID: 39339410 Free PMC article. Review.
Cited by
-
Research progress on detection techniques for point-of-care testing of foodborne pathogens.Front Bioeng Biotechnol. 2022 Aug 8;10:958134. doi: 10.3389/fbioe.2022.958134. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36003541 Free PMC article. Review.
-
Recent advances in microfluidic-based spectroscopic approaches for pathogen detection.Biomicrofluidics. 2024 Jun 7;18(3):031505. doi: 10.1063/5.0204987. eCollection 2024 May. Biomicrofluidics. 2024. PMID: 38855476 Free PMC article. Review.
-
Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples.Micromachines (Basel). 2022 Jul 8;13(7):1083. doi: 10.3390/mi13071083. Micromachines (Basel). 2022. PMID: 35888900 Free PMC article. Review.
-
Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection.Nanomaterials (Basel). 2021 Oct 13;11(10):2700. doi: 10.3390/nano11102700. Nanomaterials (Basel). 2021. PMID: 34685143 Free PMC article. Review.
-
Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor.Mar Life Sci Technol. 2021 Feb 12;3(3):382-394. doi: 10.1007/s42995-020-00085-5. eCollection 2021 Aug. Mar Life Sci Technol. 2021. PMID: 37073291 Free PMC article.
References
REFERENCES
-
- Alamer, S., Eissa, S., Chinnappan, R., & Zourob, M. (2018). A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads. Microchimica Acta, 185(3), 164. https://doi.org/10.1007/s00604-018-2696-7
-
- Ali, M. R. K., Rahman, M. A., Wu, Y., Han, T. G., Mackeya, M. H., Mackey, M. A., … El-Sayed, M. A. (2017). Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proceedings of the National Academy of Sciences of the United States of America, 114(15), E3110-E3118. https://doi.org/10.1073/pnas.1619302114
-
- Ando, J., Fujita, K., Smith, N. I., & Kawata, S. (2016). Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Letters, 11(12), 5344-5348. https://doi.org/10.1021/nl202877r
-
- Apyari, V. V., Dmitrienko, S. G., Arkhipova, V. V., Atnagulov, A. G., & Zolotov, Y. A. (2012). Determination of cysteamine using label-free gold nanoparticles. Analytical Methods, 4(10), 3193-3199. https://doi.org/10.1039/c2ay25675d
-
- Bae, N. H., Lim, S. Y., Song, Y., Jeong, S. W., Shin, S. Y., Kim, Y. T., … Park, Y. M. (2018). A disposable and multi-chamber film-based PCR chip for detection of foodborne pathogen. Sensors, 18(9). https://doi.org/10.3390/s18093158
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources