Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 3:7:581877.
doi: 10.3389/fvets.2020.581877. eCollection 2020.

Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo

Affiliations

Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca (Vicugna pacos) Preimplantation Embryo

Jennifer C Lutz et al. Front Vet Sci. .

Abstract

The alpaca (Vicugna pacos) is an important species for the production of fiber and food. Genetic improvement programs for alpacas have been hindered, however, by the lack of field-practical techniques for artificial insemination and embryo transfer. In particular, successful techniques for the cryopreservation of alpaca preimplantation embryos have not been reported previously. The objective of this study was to develop a field-practical and efficacious technique for cryopreservation of alpaca preimplantation embryos using a modification of a vitrification protocol originally devised for horses and adapted for dromedary camels. Four naturally cycling non-superovulated Huacaya females serving as embryo donors were mated to males of proven fertility. Donors received 30 μg of gonadorelin at the time of breeding, and embryos were non-surgically recovered 7 days after mating. Recovered embryos (n = 4) were placed individually through a series of three vitrification solutions at 20°C (VS1: 1.4 M glycerol; VS2: 1.4 M glycerol + 3.6 M ethylene glycol; VS3: 3.4 M glycerol + 4.6 M ethylene glycol) before loading into an open-pulled straw (OPS) and plunging directly into liquid nitrogen for storage. At warming, each individual embryo was sequentially placed through warming solutions (WS1: 0.5 M galactose at 37°C; WS2: 0.25 M galactose at 20°C), and warmed embryos were incubated at 37°C in 5% CO2 in humidified air for 20-22 h in 1 ml Syngro® holding medium supplemented with 10% (v/v) alpaca serum to perform an initial in vitro assessment of post-warming viability. Embryos whose diameter increased during culture (n = 2) were transferred individually into synchronous recipients, whereas embryos that did not grow (n = 2) were transferred together into a single recipient to perform an in vivo assessment of post-warming viability. Initial pregnancy detection was performed ultrasonographically 29 days post-transfer when fetal heartbeat could be detected, and one of three recipients was pregnant (25% embryo survival rate). On November 13, 2019, the one pregnant recipient delivered what is believed to be the world's first cria produced from a vitrified-warmed alpaca embryo.

Keywords: South American camelid; cryopreservation; galactose; hatched blastocyst; vitrification.

PubMed Disclaimer

Conflict of interest statement

The authors declare that this research was financed by and conducted at Cas-Cad-Nac Farm. JL, SJ, and KD are affiliated with or employed by Cas-Cad-Nac Farms. PT is affiliated with GeneSearch, Inc. HV-M, DP-S, and MM-G are affiliated with or employed by Vivanco International SAC. Although these results directly benefit Cas-Cad-Nac Farm, GeneSearch, Inc, and Vivanco International SAC, these results also benefit alpaca breeders throughout the world because they are being published in an open access journal. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Vitrified-warmed alpaca preimplantation embryo that resulted in the birth of a live cria. (A) depicts the freshly collected embryo, and (B) depicts the embryo post-warming.
Figure 2
Figure 2
Recipient female and cria resulting from the transfer of a vitrified-warmed alpaca preimplantation embryo. The cria was born November 13, 2019.
Figure 3
Figure 3
Cria (medium fawn color, in foreground) produced from a vitrified-warmed alpaca preimplantation embryo at ~7.5 months of age, demonstrating the normalcy of postnatal development.

Similar articles

Cited by

References

    1. FAOSTAT (2018). Available online at: http://www.fao.org/faostat/en/#data/QA (accessed October 13, 2020).
    1. Haudry De Soucy R. Investing in the development of South American campesino camelid economies: the experience of the international fund for agricultural development (IFAD). In: Pérez-Cabal MÁ, Gutiérrez JP, Cervantes I, Alcalde MJ, editors. Fibre Production in South American Camelids and Other Fibre Animals. Wageningen Academic Publishers: Wageningen: (2011) 195–99. 10.3920/978-90-8686-727-1_25 - DOI
    1. Stuart CC, Bathgate R. Advancing assisted reproductive technologies in camelids (especially the alpaca). Rural Industries Research & Development Corporation Publication Number 15/067. (2015). p. 36. - PubMed
    1. Palomino JM, Jones L, Vanhanen T, Mastromonaco GF, Busato R, Adams GP. Alpaca embryo transfer on a private Canadian farm. Can Vet J. (2018) 59:631–4. - PMC - PubMed
    1. Trasorras VL, Carretero MI, Neild DM, Chaves MG, Giuliano SM, Miragaya MH. Production, preservation, and transfer of South American camelid embryos. Front Vet Sci. (2017) 4:190. 10.3389/fvets.2017.00190 - DOI - PMC - PubMed

LinkOut - more resources