Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;2(3):100152.
doi: 10.1016/j.ajogmf.2020.100152. Epub 2020 Jun 25.

Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing

Affiliations
Free article

Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing

Kimberly A Martin et al. Am J Obstet Gynecol MFM. 2020 Aug.
Free article

Abstract

Background: Maternal X chromosome abnormalities may cause discordant results between noninvasive prenatal screening tests and diagnostic evaluation of the fetus/newborn, leading to unnecessary invasive testing. Women with X chromosome abnormalities are at increased risk for reproductive, pregnancy, or other health complications, which may be reduced or ameliorated by early diagnosis, monitoring, and intervention.

Objective: This study aimed to validate a single nucleotide polymorphism-based noninvasive prenatal test to identify X chromosome abnormalities of maternal origin.

Study design: All tests unable to evaluate fetal risk for aneuploidy because of uninformative algorithm results were eligible for inclusion. Two groups of cases were prospectively identified: Group A (n=106) where a maternal X chromosome abnormality was suspected and Group B (control group, n=107) where a fetal chromosome abnormality involving chromosome 13, 18, 21, or X was suspected but did not meet criteria for reporting. Maternal DNA was isolated from the plasma-depleted cellular pellet and sent to a reference laboratory for blinded analysis using chromosomal microarray. A chromosome abnormality involving chromosomes 13, 18, 21, or X was reported by the reference laboratory if ≥5 Mb in size and present in ≥20% of the DNA.

Results: A maternal X chromosome abnormality was suspected in 1/1305 tests (149/194,385; 0.08%). In Group A, a maternal X chromosome abnormality was confirmed in 100/106 cases (94.3% positive predictive value, 1-sided 97.5% confidence interval, 88.1%-100.0%). Turner syndrome was the most commonly suspected maternal abnormality (58/106, 54.7%), with confirmation of mosaic or nonmosaic 45,X by microarray in 38/58 (65.5%) cases. Noninvasive prenatal screening tests suspected the presence of maternal 47,XXX with or without mosaicism in 40/106 (37.7%) cases, confirmed by microarray in 38/40 (95.0%). In Group B (n=107), no maternal microarray abnormalities were reported, providing a negative predictive value of 100% (1-sided 97.5% confidence interval, 96.6%-100.0%).

Conclusion: When noninvasive prenatal testing suspected a maternal X chromosome abnormality, maternal microarray confirmed an X chromosome abnormality with 94.3% positive predictive value. Of the maternal X chromosome abnormalities detected by array, >50% were 45,X. When fetal chromosome abnormalities involving chromosomes 13, 18, 21, or X were suspected, no maternal chromosome abnormalities were reported, yielding a negative predictive value of 100%. Women with maternal X abnormalities suspected with noninvasive prenatal testing may be at increased risk for reproductive and health complications; early evaluation and treatment may prevent long-term consequences or disability.

Keywords: 45,X; 47,XXX; Turner syndrome; X chromosome mosaicism; cell-free DNA; maternal X chromosome abnormalities; noninvasive prenatal screening; positive predictive value; premature ovarian failure; sex chromosome abnormalities.

PubMed Disclaimer

Publication types

LinkOut - more resources