Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;3(6):550-561.
doi: 10.1089/crispr.2020.0065.

CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates

Affiliations

CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates

Eirik A Moreb et al. CRISPR J. 2020 Dec.

Abstract

CRISPR-Cas systems have become ubiquitous for genome editing in eukaryotic as well as bacterial systems. Cas9 forms a complex with a guide RNA (gRNA) and searches DNA for a matching sequence (target site) next to a protospacer adjacent motif (PAM). Once found, Cas9 cuts the DNA. Cas9 is revolutionary for the ability to change the RNA sequence and target a new site easily. However, while algorithms have been developed to predict gRNA-specific Cas9 activity, a fundamental biological understanding of gRNA-specific activity is lacking. The number of PAM sites in the genome is effectively a large pool of inhibitory substrates, competing with the target site for the Cas9/gRNA complex. We demonstrate that increasing the number of non-target sites for a given gRNA reduces on-target activity in a dose-dependent manner. Furthermore, we show that the use of Cas9 mutants with increased PAM specificity toward a smaller subset of PAMs (or smaller pool of competitive substrates) improves cutting rates, while increased PAM promiscuity decreases cutting rates. Decreasing the potential search space by increasing PAM specificity provides a path toward improving on-target activity for slower high-fidelity Cas9 variants. Engineering improved PAM specificity to reduce the competitive search space offers an alternative strategy to engineer Cas9 variants with increased specificity and maintained on-target activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources