Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 19;958(1):19-23.
doi: 10.1016/0005-2760(88)90241-x.

Interaction of alpha-tocopherol with iron: antioxidant and prooxidant effects of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron

Affiliations

Interaction of alpha-tocopherol with iron: antioxidant and prooxidant effects of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron

K Yamamoto et al. Biochim Biophys Acta. .

Abstract

The dual functions of alpha-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron were studied, aiming specifically at elucidating the effect of interaction between alpha-tocopherol and iron. Ferrous ion decomposed hydroperoxide rapidly and induced the free radical chain oxidation of soybean phosphatidylcholine liposomes. alpha-Tocopherol acted primarily as a radical scavenger in the oxidation induced by ferrous ion and acted as an antioxidant. Ferric ion decomposed hydroperoxide much more slowly than ferrous ion, but it also induced the oxidation of liposomal membranes. alpha-Tocopherol incorporated into artificial liposomal membranes reduced ferric ion rapidly to give more reactive ferrous ion, and alpha-tocopherol acted either as an antioxidant or as a prooxidant depending on the experimental conditions. When alpha-tocopherol was depleted by the interaction with ferric ion, it acted solely as a prooxidant, whereas if some alpha-tocopherol remained, it acted as an antioxidant. On the other hand, alpha-tocopherol residing in the intact erythrocyte membranes did not reduce ferric ion in the aqueous region.

PubMed Disclaimer

LinkOut - more resources