Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 16;47(23):e2020GL090444.
doi: 10.1029/2020GL090444. Epub 2020 Nov 28.

Variation in Concentration and Sources of Black Carbon in a Megacity of China During the COVID-19 Pandemic

Affiliations

Variation in Concentration and Sources of Black Carbon in a Megacity of China During the COVID-19 Pandemic

Liang Xu et al. Geophys Res Lett. .

Abstract

Black carbon (BC) not only warms the atmosphere but also affects human health. The nationwide lockdown due to the Coronavirus Disease 2019 (COVID-19) pandemic led to a major reduction in human activity during the past 30 years. Here, the concentration of BC in the urban, urban-industry, suburb, and rural areas of a megacity Hangzhou were monitored using a multiwavelength Aethalometer to estimate the impact of the COVID-19 lockdown on BC emissions. The citywide BC decreased by 44% from 2.30 to 1.29 μg/m3 following the COVID-19 lockdown period. The source apportionment based on the Aethalometer model shows that vehicle emission reduction responded to BC decline in the urban area and biomass burning in rural areas around the megacity had a regional contribution of BC. We highlight that the emission controls of vehicles in urban areas and biomass burning in rural areas should be more efficient in reducing BC in the megacity Hangzhou.

Keywords: COVID‐19 lockdown; black carbon; source.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1
The location of observation sites and the population density of Hangzhou City.
Figure 2
Figure 2
(a) The hourly averaged vehicle number running on the roads showing the variation in traffic in downtown Hangzhou. Data source: Hangzhou Traffic Police Division. The figure was generated using Igor Probased computer programs developed by (Wu et al. (2018)). (b) The mean deweathered BC concentration in different areas during the five stages. The detailed BC concentration is presented in Table S3 in the supporting information.
Figure 3
Figure 3
Mean diurnal variations in BC (without deweathering) in the four areas on weekdays. (a) Urban, (b) Urban industry, (c) Suburban, and (d) Rural.
Figure 4
Figure 4
Average variation in the BC source apportionment from fossil fuel (gray area) and biomass burning (orange area) for the four areas on weekdays (deweathered data). (a) Urban, (b) Urban industry, (c) Suburban, and (d) Rural. The detailed data are presented in Table S4.

Similar articles

Cited by

References

    1. Bauwens, M. , Compernolle, S. , Stavrakou, T. , Müller, J.‐F. , van Gent, J. , Eskes, H. , Levelt, P. F. , Van Der, A. R. , Veefkind, J. P. , Vlietinck, J. , & Yu, H. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47, e2020GL087978 10.1029/2020gl087978 - DOI - PMC - PubMed
    1. Becerril‐Valle, M. , Coz, E. , Prévôt, A. S. H. , Močnik, G. , Pandis, S. N. , Sánchez de la Campa, A. M. , Alastuey, A. , Díaz, E. , Pérez, R. M. , & Artíñano, B. (2017). Characterization of atmospheric black carbon and co‐pollutants in urban and rural areas of Spain. Atmospheric Environment, 169, 36–53. 10.1016/j.atmosenv.2017.09.014 - DOI
    1. Bond, T. C. , Doherty, S. J. , Fahey, D. W. , Forster, P. M. , Berntsen, T. , DeAngelo, B. J. , Flanner, M. G. , Ghan, S. , Kärcher, B. , Koch, D. , Kinne, S. , Kondo, Y. , Quinn, P. K. , Sarofim, M. C. , Schultz, M. G. , Schulz, M. , Venkataraman, C. , Zhang, H. , Zhang, S. , Bellouin, N. , Guttikunda, S. K. , Hopke, P. K. , Jacobson, M. Z. , Kaiser, J. W. , Klimont, Z. , Lohmann, U. , Schwarz, J. P. , Shindell, D. , Storelvmo, T. , Warren, S. G. , & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552. 10.1002/jgrd.50171 - DOI
    1. Cappa, C. D. , Zhang, X. , Russell, L. M. , Collier, S. , Lee, A. K. Y. , Chen, C.‐L. , Betha, R. , Chen, S. , Liu, J. , Price, D. J. , Sanchez, K. J. , McMeeking, G. R. , Williams, L. R. , Onasch, T. B. , Worsnop, D. R. , Abbatt, J. , & Zhang, Q. (2019). Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. Journal of Geophysical Research: Atmospheres, 124, 1550–1577. 10.1029/2018JD029501 - DOI
    1. Chen, J. , Li, C. , Ristovski, Z. , Milic, A. , Gu, Y. , Islam, M. S. , Wang, S. , Hao, J. , Zhang, H. , He, C. , Guo, H. , Fu, H. , Miljevic, B. , Morawska, L. , Thai, P. , Lam, Y. F. , Pereira, G. , Ding, A. , Huang, X. , & Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 579, 1000–1034. 10.1016/j.scitotenv.2016.11.025 - DOI - PubMed

References From the Supporting Information

    1. Cappa, C. D. , Onasch, T. B. , Massoli, P. , Worsnop, D. R. , Bates, T. S. , Cross, E. S. , Davidovits, P. , Hakala, J. , Hayden, K. L. , Jobson, B. T. , Kolesar, K. R. , Lack, D. A. , Lerner, B. M. , Li, S. M. , Mellon, D. , Nuaaman, I. , Olfert, J. S. , Petaja, T. , Quinn, P. K. , Song, C. , Subramanian, R. , Williams, E. J. , & Zaveri, R. A. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078–1081. 10.1126/science.1223447 - DOI - PubMed
    1. Day, D. E. , Hand, J. L. , Carrico, C. M. , Engling, G. , & Malm, W. C. (2006). Humidification factors from laboratory studies of fresh smoke from biomass fuels. Journal of Geophysical Research, 111, D22202 10.1029/2006JD007221 - DOI
    1. Favez, O. , El Haddad, I. , Piot, C. , Boréave, A. , Abidi, E. , Marchand, N. , Jaffrezo, J. L. , Besombes, J. L. , Personnaz, M. B. , Sciare, J. , & Wortham, H. (2010). Inter‐comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10(12), 5295–5314. 10.5194/acp-10-5295-2010 - DOI
    1. Kirchstetter, T. W. , Novakov, T. , & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research, 109, D21208 10.1029/2004JD004999 - DOI
    1. Lack, D. A. , & Langridge, J. M. (2013). On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmospheric Chemistry and Physics, 13(20), 10,535–10,543. 10.5194/acp-13-10535-2013 - DOI

LinkOut - more resources