Variation in Concentration and Sources of Black Carbon in a Megacity of China During the COVID-19 Pandemic
- PMID: 33349736
- PMCID: PMC7744912
- DOI: 10.1029/2020GL090444
Variation in Concentration and Sources of Black Carbon in a Megacity of China During the COVID-19 Pandemic
Abstract
Black carbon (BC) not only warms the atmosphere but also affects human health. The nationwide lockdown due to the Coronavirus Disease 2019 (COVID-19) pandemic led to a major reduction in human activity during the past 30 years. Here, the concentration of BC in the urban, urban-industry, suburb, and rural areas of a megacity Hangzhou were monitored using a multiwavelength Aethalometer to estimate the impact of the COVID-19 lockdown on BC emissions. The citywide BC decreased by 44% from 2.30 to 1.29 μg/m3 following the COVID-19 lockdown period. The source apportionment based on the Aethalometer model shows that vehicle emission reduction responded to BC decline in the urban area and biomass burning in rural areas around the megacity had a regional contribution of BC. We highlight that the emission controls of vehicles in urban areas and biomass burning in rural areas should be more efficient in reducing BC in the megacity Hangzhou.
Keywords: COVID‐19 lockdown; black carbon; source.
©2020. The Authors.
Conflict of interest statement
The authors declare no competing financial interests.
Figures




Similar articles
-
Assessment of the coronavirus disease 2019 (COVID-19) pandemic imposed lockdown and unlock effects on black carbon aerosol, its source apportionment, and aerosol radiative forcing over an urban city in India.Atmos Res. 2022 Apr 1;267:105924. doi: 10.1016/j.atmosres.2021.105924. Epub 2021 Nov 16. Atmos Res. 2022. PMID: 34803200 Free PMC article.
-
Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi.Chemosphere. 2021 May;270:129435. doi: 10.1016/j.chemosphere.2020.129435. Epub 2020 Dec 26. Chemosphere. 2021. PMID: 33412356 Free PMC article.
-
Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown.Air Qual Atmos Health. 2021;14(7):1081-1095. doi: 10.1007/s11869-021-01004-y. Epub 2021 May 10. Air Qual Atmos Health. 2021. PMID: 33995690 Free PMC article.
-
Highlighting Uncertainty and Recommendations for Improvement of Black Carbon Biomass Fuel-Based Emission Inventories in the Indo-Gangetic Plain Region.Curr Environ Health Rep. 2016 Mar;3(1):73-80. doi: 10.1007/s40572-016-0075-2. Curr Environ Health Rep. 2016. PMID: 26800674 Review.
-
Declining carbon emission/concentration during COVID-19: A critical review on temporary relief.Carbon Trends. 2021 Oct;5:100131. doi: 10.1016/j.cartre.2021.100131. Epub 2021 Nov 14. Carbon Trends. 2021. PMID: 38620883 Free PMC article. Review.
Cited by
-
Machine Learning on the COVID-19 Pandemic, Human Mobility and Air Quality: A Review.IEEE Access. 2021 May 11;9:72420-72450. doi: 10.1109/ACCESS.2021.3079121. eCollection 2021. IEEE Access. 2021. PMID: 34786314 Free PMC article.
-
East Asian summer monsoon enhanced by COVID-19.Clim Dyn. 2022;59(9-10):2965-2978. doi: 10.1007/s00382-022-06247-8. Epub 2022 Mar 31. Clim Dyn. 2022. PMID: 35382257 Free PMC article.
-
Effect of restricted emissions during COVID-19 on atmospheric aerosol chemistry in a Greater Cairo suburb: Characterization and enhancement of secondary inorganic aerosol production.Atmos Pollut Res. 2022 Nov;13(11):101587. doi: 10.1016/j.apr.2022.101587. Epub 2022 Nov 2. Atmos Pollut Res. 2022. PMID: 36340245 Free PMC article.
-
Variations in concentration and solubility of iron in atmospheric fine particles during the COVID-19 pandemic: An example from China.Gondwana Res. 2021 Sep;97:138-144. doi: 10.1016/j.gr.2021.05.022. Epub 2021 Jun 2. Gondwana Res. 2021. PMID: 35721257 Free PMC article.
-
Exploring the spatial heterogeneity and temporal homogeneity of ambient PM10 in nine core cities of China.Sci Rep. 2021 Apr 26;11(1):8991. doi: 10.1038/s41598-021-88596-8. Sci Rep. 2021. PMID: 33903720 Free PMC article.
References
-
- Bauwens, M. , Compernolle, S. , Stavrakou, T. , Müller, J.‐F. , van Gent, J. , Eskes, H. , Levelt, P. F. , Van Der, A. R. , Veefkind, J. P. , Vlietinck, J. , & Yu, H. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47, e2020GL087978 10.1029/2020gl087978 - DOI - PMC - PubMed
-
- Becerril‐Valle, M. , Coz, E. , Prévôt, A. S. H. , Močnik, G. , Pandis, S. N. , Sánchez de la Campa, A. M. , Alastuey, A. , Díaz, E. , Pérez, R. M. , & Artíñano, B. (2017). Characterization of atmospheric black carbon and co‐pollutants in urban and rural areas of Spain. Atmospheric Environment, 169, 36–53. 10.1016/j.atmosenv.2017.09.014 - DOI
-
- Bond, T. C. , Doherty, S. J. , Fahey, D. W. , Forster, P. M. , Berntsen, T. , DeAngelo, B. J. , Flanner, M. G. , Ghan, S. , Kärcher, B. , Koch, D. , Kinne, S. , Kondo, Y. , Quinn, P. K. , Sarofim, M. C. , Schultz, M. G. , Schulz, M. , Venkataraman, C. , Zhang, H. , Zhang, S. , Bellouin, N. , Guttikunda, S. K. , Hopke, P. K. , Jacobson, M. Z. , Kaiser, J. W. , Klimont, Z. , Lohmann, U. , Schwarz, J. P. , Shindell, D. , Storelvmo, T. , Warren, S. G. , & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380–5552. 10.1002/jgrd.50171 - DOI
-
- Cappa, C. D. , Zhang, X. , Russell, L. M. , Collier, S. , Lee, A. K. Y. , Chen, C.‐L. , Betha, R. , Chen, S. , Liu, J. , Price, D. J. , Sanchez, K. J. , McMeeking, G. R. , Williams, L. R. , Onasch, T. B. , Worsnop, D. R. , Abbatt, J. , & Zhang, Q. (2019). Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. Journal of Geophysical Research: Atmospheres, 124, 1550–1577. 10.1029/2018JD029501 - DOI
-
- Chen, J. , Li, C. , Ristovski, Z. , Milic, A. , Gu, Y. , Islam, M. S. , Wang, S. , Hao, J. , Zhang, H. , He, C. , Guo, H. , Fu, H. , Miljevic, B. , Morawska, L. , Thai, P. , Lam, Y. F. , Pereira, G. , Ding, A. , Huang, X. , & Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 579, 1000–1034. 10.1016/j.scitotenv.2016.11.025 - DOI - PubMed
References From the Supporting Information
-
- Cappa, C. D. , Onasch, T. B. , Massoli, P. , Worsnop, D. R. , Bates, T. S. , Cross, E. S. , Davidovits, P. , Hakala, J. , Hayden, K. L. , Jobson, B. T. , Kolesar, K. R. , Lack, D. A. , Lerner, B. M. , Li, S. M. , Mellon, D. , Nuaaman, I. , Olfert, J. S. , Petaja, T. , Quinn, P. K. , Song, C. , Subramanian, R. , Williams, E. J. , & Zaveri, R. A. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078–1081. 10.1126/science.1223447 - DOI - PubMed
-
- Day, D. E. , Hand, J. L. , Carrico, C. M. , Engling, G. , & Malm, W. C. (2006). Humidification factors from laboratory studies of fresh smoke from biomass fuels. Journal of Geophysical Research, 111, D22202 10.1029/2006JD007221 - DOI
-
- Favez, O. , El Haddad, I. , Piot, C. , Boréave, A. , Abidi, E. , Marchand, N. , Jaffrezo, J. L. , Besombes, J. L. , Personnaz, M. B. , Sciare, J. , & Wortham, H. (2010). Inter‐comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10(12), 5295–5314. 10.5194/acp-10-5295-2010 - DOI
-
- Kirchstetter, T. W. , Novakov, T. , & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research, 109, D21208 10.1029/2004JD004999 - DOI
-
- Lack, D. A. , & Langridge, J. M. (2013). On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmospheric Chemistry and Physics, 13(20), 10,535–10,543. 10.5194/acp-13-10535-2013 - DOI
Associated data
LinkOut - more resources
Full Text Sources
Miscellaneous