Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;64(3):379-390.
doi: 10.1165/rcmb.2020-0335OC.

Dietary Carbohydrates and Fat Induce Distinct Surfactant Alterations in Mice

Affiliations

Dietary Carbohydrates and Fat Induce Distinct Surfactant Alterations in Mice

Julia Schipke et al. Am J Respir Cell Mol Biol. 2021 Mar.

Abstract

Obesity and type 2 diabetes are nutrition-related conditions associated with lung function impairment and pulmonary diseases; however, the underlying pathomechanisms are incompletely understood. Pulmonary surfactant is essential for lung function, and surfactant synthesis by AT2 (alveolar epithelial type 2) cells relies on nutrient uptake. We hypothesized that dietary amounts of carbohydrates or fat affect surfactant homeostasis and composition. Feeding mice a starch-rich diet (StD), sucrose-rich diet (SuD), or fat-rich diet (FaD) for 30 weeks resulted in hypercholesterolemia and hyperinsulinemia compared with a fiber-rich control diet. In SuD and FaD groups, lung mechanic measurements revealed viscoelastic changes during inspiration, indicating surfactant alterations, and interfacial adsorption of isolated surfactant at the air-liquid interface was decreased under FaD. The composition of characteristic phospholipid species was modified, including a shift from dipalmitoyl-phosphatidylcholine (PC16:0/16:0) to palmitoyl-palmitoleoyl-phosphatidylcholine (PC16:0/16:1) in response to carbohydrates and decreased myristic acid-containing phosphatidylcholine species (PC14:0/14:0; PC16:0/14:0) on excess fat intake, as well as higher palmitoyl-oleoyl-phosphatidylglycerol (PG16:0/18:1) and palmitoyl-linoleoyl-phosphatidylglycerol (PG16:0/18:2) fractions in StD, SuD, and FaD groups than in the control diet. Moreover, mRNA expression levels of surfactant synthesis-related proteins within AT2 cells were altered. Under the StD regimen, AT2 cells showed prominent lipid accumulations and smaller lamellar bodies. Thus, in an established mouse model, distinct diet-related surfactant alterations were subtle, yet detectable, and may become challenging under conditions of reduced respiratory capacity. Dietary fat was the only macronutrient significantly affecting surfactant function. This warrants future studies examining alimentary effects on lung surfactant, with special regard to pulmonary complications in obesity and type 2 diabetes.

Keywords: alveolar epithelial type 2 cells; diet composition; lipid metabolism; obesity; pulmonary surfactant.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources