Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 5;263(1):267-73.

A region in the steroid binding domain determines formation of the non-DNA-binding, 9 S glucocorticoid receptor complex

Affiliations
  • PMID: 3335498
Free article

A region in the steroid binding domain determines formation of the non-DNA-binding, 9 S glucocorticoid receptor complex

W B Pratt et al. J Biol Chem. .
Free article

Abstract

This work was initiated to determine if a specific region of the glucocorticoid receptor determines the formation of the inactive (i.e. non-DNA-binding) 9 S form of the receptor recovered in cytosol preparations. It is known that the murine glucocorticoid receptor of the nti phenotype, which consists of only the carboxyl-terminal 40-kDa peptide containing the DNA-binding and steroid-binding domains separated by a short linker region, is recovered in hypotonic lysates as a 9 S heteromeric complex (Gehring, U., and Arndt, H. (1985) FEBS Lett. 179, 138-142). To further localize the domain required for formation of the 9 S complex, we have determined the sedimentation coefficients of receptors produced in COS-7 cells transfected with several mutants of the human glucocorticoid receptor gene. Deletion of the DNA-binding domain results in a 9 S complex that is somewhat less stable than the wild type receptor during sucrose gradient centrifugation. Deletion of the linker region yields a molybdate-stabilized 9 S complex, but deletion of the entire steroid-binding domain or internal deletion of the amino-terminal two-thirds of this domain yields receptors that are constitutive transcriptional activators and are present in cytosol only in the 4 S form. Taken together, these observations demonstrate that the steroid-binding domain contains the features required for formation of the 9 S heteromeric complex, and they are consistent with the proposal that the steroid-binding domain normally represses receptor function.

PubMed Disclaimer

Publication types

LinkOut - more resources