Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;31(5):769-774.
doi: 10.1017/S1047951120004606. Epub 2020 Dec 23.

Deep hypothermic circulatory arrest in cyanotic piglets is associated with increased neuronal necrosis

Affiliations

Deep hypothermic circulatory arrest in cyanotic piglets is associated with increased neuronal necrosis

Matus Petko et al. Cardiol Young. 2021 May.

Abstract

Background: The contribution of neonatal cyanosis, inherent to cyanotic congenital heart disease, to the magnitude of neurologic injury during deep hypothermic circulatory arrest has not been fully delineated. This study investigates the impact of cyanosis and deep hypothermic circulatory arrest on brain injury.

Methods: Neonatal piglets were randomised to placement of a pulmonary artery to left atrium shunt to create cyanosis or sham thoracotomy. At day 7, animals were randomised to undergo deep hypothermic circulatory arrest or sham. Arterial oxygen tension and haematocrit were obtained. Neurobehavioural performance was serially assessed. The animals were sacrificed on day 14. Brain tissue was assessed for neuronal necrosis using a 5-point histopathologic score.

Results: Four experimental groups were analysed (sham, n = 10; sham + deep hypothermic circulatory arrest, n = 8; shunt, n = 9; shunt + deep hypothermic circulatory arrest, n = 7). Cyanotic piglets had significantly higher haematocrit and lower partial pressure of oxygen at day 14 than non-cyanotic piglets. There were no statistically significant differences in neurobehavioural scores at day 1. However, shunt + deep hypothermic circulatory arrest piglets had evidence of greater neuronal injury than sham animals (median (range): 2 (0-4) versus 0 (0-0), p = 0.02).

Discussion: Cyanotic piglets undergoing deep hypothermic circulatory arrest had increased neuronal injury compared to sham animals. Significant injury was not seen for either cyanosis or deep hypothermic circulatory arrest alone relative to shams. These findings suggest an interaction between cyanosis and deep hypothermic circulatory arrest and may partially explain the suboptimal neurologic outcomes seen in children with cyanotic heart disease who undergo deep hypothermic circulatory arrest.

Keywords: Hypoxia; animal study; cardiopulmonary bypass; deep hypothermic circulatory arrest.

PubMed Disclaimer

LinkOut - more resources