Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan 25;263(3):1444-53.

The ionization and distribution behavior of oleic acid in chylomicrons and chylomicron-like emulsion particles and the influence of serum albumin

Affiliations
  • PMID: 3335552
Free article

The ionization and distribution behavior of oleic acid in chylomicrons and chylomicron-like emulsion particles and the influence of serum albumin

P J Spooner et al. J Biol Chem. .
Free article

Abstract

A reproducible, fairly narrow-sized population of rat lymph chylomicrons, approximately 100 nm, was isolated by centrifugation and combined with low levels of [1-13C]oleic acid for NMR studies. The carboxyl chemical shift was monitored as a function of aqueous pH to characterize the ionization behavior of the fatty acid in these particles. The titration curves were very similar to those for oleic acid in equivalent-sized emulsion particles composed of egg phosphatidylcholine and triolein. A simple partition-ionization model was fitted to the data to derive values for apparent ionization constant, expressed as pKapp, of 7.4-7.5 and the "true" surface to core partition coefficient of approximately 7 for oleic acid in chylomicrons. The fatty acid in chylomicrons thus appeared to be largely associated with the surface regions of these particles. Addition of bovine serum albumin to the samples showed that near physiologic pH much of the fatty acid was bound to the albumin at fatty acid to albumin-binding stoichiometries as high as 5.1 and with mass ratios of greater than 2 in favor of the lipid or lipoprotein particles. Lowering the pH of the medium shifted the distribution of fatty acid away from albumin so that at pH 5 with the emulsion, virtually all the fatty acid was associated with the lipid. The behavior observed under physiologic conditions is consistent with the rapid clearance and redistribution of fatty acid generated in these particles by lipolytic processes. However, under conditions of severe acidosis, hyperlipidemia, and hypoalbuminemia a significant portion of fatty acids might be retained in triglyceride-rich lipoproteins and their remnants and affect subsequent metabolism.

PubMed Disclaimer

Publication types

LinkOut - more resources