Polymeric nanoparticle vaccines to combat emerging and pandemic threats
- PMID: 33360074
- PMCID: PMC7834201
- DOI: 10.1016/j.biomaterials.2020.120597
Polymeric nanoparticle vaccines to combat emerging and pandemic threats
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles' delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Keywords: Cellular immunity; Humoral immunity; Nanoparticle vaccine; Polymer nanostructure; Self-assembly; Subunit vaccine.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures











Similar articles
-
Biomaterials for nanoparticle vaccine delivery systems.Pharm Res. 2014 Oct;31(10):2563-82. doi: 10.1007/s11095-014-1419-y. Epub 2014 May 22. Pharm Res. 2014. PMID: 24848341 Free PMC article. Review.
-
Enhanced Immune Responses by Virus-Mimetic Polymeric Nanostructures Against Infectious Diseases.Front Immunol. 2022 Jan 19;12:804416. doi: 10.3389/fimmu.2021.804416. eCollection 2021. Front Immunol. 2022. PMID: 35126367 Free PMC article. Review.
-
pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.ACS Nano. 2013 May 28;7(5):3912-25. doi: 10.1021/nn305466z. Epub 2013 Apr 30. ACS Nano. 2013. PMID: 23590591 Free PMC article.
-
Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination.J Control Release. 2019 Jan 10;293:48-62. doi: 10.1016/j.jconrel.2018.11.006. Epub 2018 Nov 11. J Control Release. 2019. PMID: 30428307
-
Polymeric nanogels as vaccine delivery systems.Nanomedicine. 2013 Feb;9(2):159-73. doi: 10.1016/j.nano.2012.06.001. Epub 2012 Jul 5. Nanomedicine. 2013. PMID: 22772049 Review.
Cited by
-
Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems.Macromolecules. 2022 Aug 23;55(16):6913-6937. doi: 10.1021/acs.macromol.2c00854. Epub 2022 Aug 4. Macromolecules. 2022. PMID: 36034324 Free PMC article. Review.
-
Precision-engineering of subunit vaccine particles for prevention of infectious diseases.Front Immunol. 2023 Feb 3;14:1131057. doi: 10.3389/fimmu.2023.1131057. eCollection 2023. Front Immunol. 2023. PMID: 36817419 Free PMC article. Review.
-
Epitope-coated polymer particles elicit neutralising antibodies against Plasmodium falciparum sporozoites.NPJ Vaccines. 2021 Nov 29;6(1):141. doi: 10.1038/s41541-021-00408-2. NPJ Vaccines. 2021. PMID: 34845267 Free PMC article.
-
Effect of Antigen Structure in Subunit Vaccine Nanoparticles on Humoral Immune Responses.ACS Biomater Sci Eng. 2023 Mar 13;9(3):1296-1306. doi: 10.1021/acsbiomaterials.2c01516. Epub 2023 Feb 27. ACS Biomater Sci Eng. 2023. PMID: 36848229 Free PMC article.
-
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16. Mater Chem Front. 2021. PMID: 38344270 Free PMC article.
References
-
- Patz J.A., Campbell-Lendrum D., Holloway T., Foley J.A. Impact of regional climate change on human health. Nature. 2005;438(7066):310–317. - PubMed
-
- Boni M.F., Lemey P., Jiang X., Lam T.T.-Y., Perry B.W., Castoe T.A., Rambaut A., Robertson D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020;5(11):1408–1417. - PubMed
-
- Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., Xing X., Xiang N., Wu Y., Li C., Chen Q., Li D., Liu T., Zhao J., Liu M., Tu W., Chen C., Jin L., Yang R., Wang Q., Zhou S., Wang R., Liu H., Luo Y., Liu Y., Shao G., Li H., Tao Z., Yang Y., Deng Z., Liu B., Ma Z., Zhang Y., Shi G., Lam T.T.Y., Wu J.T., Gao G.F., Cowling B.J., Yang B., Leung G.M., Feng Z. Early transmission dynamics in Wuhan, China, of novel Coronavirus–infected pneumonia. N. Engl. J. Med. 2020;382(13):1199–1207. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical