Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;44(6):3272-3284.
doi: 10.1109/TPAMI.2020.3046915. Epub 2022 May 5.

SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild

SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild

Soumyadip Sengupta et al. IEEE Trans Pattern Anal Mach Intell. 2022 Jun.

Abstract

We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained human face image into shape, reflectance and illuminance. SfSNet is designed to reflect a physical lambertian rendering model. SfSNet learns from a mixture of labeled synthetic and unlabeled real-world images. This allows the network to capture low-frequency variations from synthetic and high-frequency details from real images through the photometric reconstruction loss. SfSNet consists of a new decomposition architecture with residual blocks that learns a complete separation of albedo and normal. This is used along with the original image to predict lighting. SfSNet produces significantly better quantitative and qualitative results than state-of-the-art methods for inverse rendering and independent normal and illumination estimation. We also introduce a companion network, SfSMesh, that utilizes normals estimated by SfSNet to reconstruct a 3D face mesh. We demonstrate that SfSMesh produces face meshes with greater accuracy than state-of-the-art methods on real-world images.

PubMed Disclaimer

Similar articles

Cited by

Publication types