Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 26;66(5).
doi: 10.1088/1361-6560/abd670.

Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV

Affiliations

Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV

Javier Brum et al. Phys Med Biol. .

Abstract

Atherosclerosis is the most fatal cardiovascular disease. As disease progresses, stenoses grow inside the arteries blocking their lumen and altering blood flow. Analysing flow dynamics can provide a deeper insight on the stenosis evolution. In this work we combined Eulerian and Lagrangian descriptors to analyze blood flow dynamics and fluid transport in stenotic aortic models with morphology, mechanical and optical properties close to those of real arteries. To this end, vorticity, particle residence time (PRT), particle's final position (FP) and finite time Lyapunov's exponents (FTLE) were computed from the experimental fluid velocity fields acquired using ultrasonic particle imaging velocimetry (Echo-PIV). For the experiments, CT-images were used to create morphological realistic models of the descending aorta with 0%, 35% and 50% occlusion degree with same mechanical properties as real arteries. Each model was connected to a circuit with a pulsatile programmable pump which mimics physiological flow and pressure conditions. The pulsatile frequency was set to ≈0.9 Hz (55 bpm) and the upstream peak Reynolds number (Re) was changed from 1100 to 2000. Flow in the post-stenotic region was composed of two main structures: a high velocity jet over the stenosis throat and a recirculation region behind the stenosis where vortex form and shed. We characterized vortex kinematics showing that vortex propagation velocity increases withRe. Moreover, from the FTLE field we identified Lagrangian coherent structures (i.e. material barriers) that dictate transport behind the stenosis. The size and strength of those barriers increased withReand the occlusion degree. Finally, from the PRT and FP maps, we showed that independently ofRe, the same amount of fluid remains on the stenosis over more than a pulsatile period.

Keywords: atherosclerosis; blood flow dynamics; lagrangian coherent structures; ultrasound.

PubMed Disclaimer

Publication types

LinkOut - more resources