Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;588(7839):616-619.
doi: 10.1038/s41586-020-3030-1. Epub 2020 Dec 23.

Plasmonic topological quasiparticle on the nanometre and femtosecond scales

Affiliations

Plasmonic topological quasiparticle on the nanometre and femtosecond scales

Yanan Dai et al. Nature. 2020 Dec.

Abstract

At the interface of classical and quantum physics, the Maxwell and Schrödinger equations describe how optical fields drive and control electronic phenomena to enable lightwave electronics at terahertz or petahertz frequencies and on ultrasmall scales1-5. The electric field of light striking a metal interacts with electrons and generates light-matter quasiparticles, such as excitons6 or plasmons7, on an attosecond timescale. Here we create and image a quasiparticle of topological plasmonic spin texture in a structured silver film. The spin angular momentum components of linearly polarized light interacting with an Archimedean coupling structure with a designed geometric phase generate plasmonic waves with different orbital angular momenta. These plasmonic fields undergo spin-orbit interaction and their superposition generates an array of plasmonic vortices. Three of these vortices can form spin textures that carry non-trivial topological charge8 resembling magnetic meron quasiparticles9. These spin textures are localized within a half-wavelength of light, and exist on the timescale of the plasmonic field. We use ultrafast nonlinear coherent photoelectron microscopy to generate attosecond videos of the spatial evolution of the vortex fields; electromagnetic simulations and analytic theory confirm the presence of plasmonic meron quasiparticles. The quasiparticles form a chiral field, which breaks the time-reversal symmetry on a nanometre spatial scale and a 20-femtosecond timescale (the 'nano-femto scale'). This transient creation of non-trivial spin angular momentum topology pertains to cosmological structure creation and topological phase transitions in quantum matter10-12, and may transduce quantum information on the nano-femto scale13,14.

PubMed Disclaimer

Similar articles

  • Metastability of photonic spin meron lattices in the presence of perturbed spin-orbit coupling.
    Lei X, Du L, Yuan X, Zhan Q. Lei X, et al. Opt Express. 2023 Jan 16;31(2):2225-2233. doi: 10.1364/OE.479282. Opt Express. 2023. PMID: 36785240
  • Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation.
    Dorney KM, Rego L, Brooks NJ, Román JS, Liao CT, Ellis JL, Zusin D, Gentry C, Nguyen QL, Shaw JM, Picón A, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Dorney KM, et al. Nat Photonics. 2018;13(2):https://doi.org/10.1038/s41566-018-0304-3. Nat Photonics. 2018. PMID: 33101455 Free PMC article.
  • Spin-Orbit Interaction of Light in Plasmonic Lattices.
    Tsesses S, Cohen K, Ostrovsky E, Gjonaj B, Bartal G. Tsesses S, et al. Nano Lett. 2019 Jun 12;19(6):4010-4016. doi: 10.1021/acs.nanolett.9b01343. Epub 2019 May 10. Nano Lett. 2019. PMID: 31046293
  • Topological spin crystals by itinerant frustration.
    Hayami S, Motome Y. Hayami S, et al. J Phys Condens Matter. 2021 Aug 19;33(44). doi: 10.1088/1361-648X/ac1a30. J Phys Condens Matter. 2021. PMID: 34343975 Review.
  • A Chirality-Based Quantum Leap.
    Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. Aiello CD, et al. ACS Nano. 2022 Apr 26;16(4):4989-5035. doi: 10.1021/acsnano.1c01347. Epub 2022 Mar 23. ACS Nano. 2022. PMID: 35318848 Free PMC article. Review.

Cited by

References

    1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).
    1. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016). - PubMed - PMC
    1. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017). - PubMed
    1. Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 80, 054401 (2017). - PubMed
    1. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018). - PubMed

Publication types

LinkOut - more resources