Plasmonic topological quasiparticle on the nanometre and femtosecond scales
- PMID: 33361792
- DOI: 10.1038/s41586-020-3030-1
Plasmonic topological quasiparticle on the nanometre and femtosecond scales
Abstract
At the interface of classical and quantum physics, the Maxwell and Schrödinger equations describe how optical fields drive and control electronic phenomena to enable lightwave electronics at terahertz or petahertz frequencies and on ultrasmall scales1-5. The electric field of light striking a metal interacts with electrons and generates light-matter quasiparticles, such as excitons6 or plasmons7, on an attosecond timescale. Here we create and image a quasiparticle of topological plasmonic spin texture in a structured silver film. The spin angular momentum components of linearly polarized light interacting with an Archimedean coupling structure with a designed geometric phase generate plasmonic waves with different orbital angular momenta. These plasmonic fields undergo spin-orbit interaction and their superposition generates an array of plasmonic vortices. Three of these vortices can form spin textures that carry non-trivial topological charge8 resembling magnetic meron quasiparticles9. These spin textures are localized within a half-wavelength of light, and exist on the timescale of the plasmonic field. We use ultrafast nonlinear coherent photoelectron microscopy to generate attosecond videos of the spatial evolution of the vortex fields; electromagnetic simulations and analytic theory confirm the presence of plasmonic meron quasiparticles. The quasiparticles form a chiral field, which breaks the time-reversal symmetry on a nanometre spatial scale and a 20-femtosecond timescale (the 'nano-femto scale'). This transient creation of non-trivial spin angular momentum topology pertains to cosmological structure creation and topological phase transitions in quantum matter10-12, and may transduce quantum information on the nano-femto scale13,14.
Similar articles
-
Metastability of photonic spin meron lattices in the presence of perturbed spin-orbit coupling.Opt Express. 2023 Jan 16;31(2):2225-2233. doi: 10.1364/OE.479282. Opt Express. 2023. PMID: 36785240
-
Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation.Nat Photonics. 2018;13(2):https://doi.org/10.1038/s41566-018-0304-3. Nat Photonics. 2018. PMID: 33101455 Free PMC article.
-
Spin-Orbit Interaction of Light in Plasmonic Lattices.Nano Lett. 2019 Jun 12;19(6):4010-4016. doi: 10.1021/acs.nanolett.9b01343. Epub 2019 May 10. Nano Lett. 2019. PMID: 31046293
-
Topological spin crystals by itinerant frustration.J Phys Condens Matter. 2021 Aug 19;33(44). doi: 10.1088/1361-648X/ac1a30. J Phys Condens Matter. 2021. PMID: 34343975 Review.
-
A Chirality-Based Quantum Leap.ACS Nano. 2022 Apr 26;16(4):4989-5035. doi: 10.1021/acsnano.1c01347. Epub 2022 Mar 23. ACS Nano. 2022. PMID: 35318848 Free PMC article. Review.
Cited by
-
Synthesizing ultrafast optical pulses with arbitrary spatiotemporal control.Sci Adv. 2022 Oct 28;8(43):eabq8314. doi: 10.1126/sciadv.abq8314. Epub 2022 Oct 26. Sci Adv. 2022. PMID: 36288319 Free PMC article.
-
Mechanical manipulation for ordered topological defects.Sci Adv. 2024 Jan 5;10(1):eadi5894. doi: 10.1126/sciadv.adi5894. Epub 2024 Jan 3. Sci Adv. 2024. PMID: 38170776 Free PMC article.
-
Femtosecond imaging of spatial deformation of surface plasmon polariton wave packet during resonant interaction with nanocavity.Nanophotonics. 2022 Feb 25;11(7):1321-1333. doi: 10.1515/nanoph-2021-0740. eCollection 2022 Mar. Nanophotonics. 2022. PMID: 39634625 Free PMC article.
-
Coherent ultrafast photoemission from a single quantized state of a one-dimensional emitter.Sci Adv. 2023 Oct 13;9(41):eadf4170. doi: 10.1126/sciadv.adf4170. Epub 2023 Oct 12. Sci Adv. 2023. PMID: 37824625 Free PMC article.
-
Photonic quasicrystal of spin angular momentum.Sci Adv. 2025 May 2;11(18):eadv3938. doi: 10.1126/sciadv.adv3938. Epub 2025 Apr 30. Sci Adv. 2025. PMID: 40305613 Free PMC article.
References
-
- Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).
-
- Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017). - PubMed
-
- Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 80, 054401 (2017). - PubMed
-
- Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources