Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021 Jul;61(7):901-912.
doi: 10.1002/jcph.1803. Epub 2021 Jan 16.

Pharmacokinetic and Pharmacodynamic Modeling of Tezepelumab to Guide Phase 3 Dose Selection for Patients With Severe Asthma

Affiliations
Clinical Trial

Pharmacokinetic and Pharmacodynamic Modeling of Tezepelumab to Guide Phase 3 Dose Selection for Patients With Severe Asthma

Neang Ly et al. J Clin Pharmacol. 2021 Jul.

Abstract

Tezepelumab is a human monoclonal antibody that blocks thymic stromal lymphopoietin, an epithelial cytokine involved in asthma pathogenesis. In the phase 2b PATHWAY study (ClinicalTrials.gov identifier: NCT02054130), tezepelumab significantly reduced exacerbations in adults with severe, uncontrolled asthma. We used pharmacokinetic (PK) and pharmacodynamic (PD) modeling to guide tezepelumab dose selection for phase 3 trials in patients with severe asthma. PK data from 7 clinical studies were used to develop a population PK model. Population PK-PD models were developed to characterize the relationship between tezepelumab PK and asthma exacerbation rate (AER) and fractional exhaled nitric oxide (FeNO) levels (using phase 2b PD data only). Tezepelumab PK were well described by a 2-compartment model with first-order absorption; PK parameter estimates were consistent with those of other immunoglobulin G2 antibodies. PK-PD models predicted that subcutaneous dosing at 210 mg every 4 weeks was associated with ≈90% of the maximum drug effect of tezepelumab on AER and FeNO; further dose increases were not expected to result in additional, clinically meaningful treatment benefit. No clinically significant covariates of treatment effects on AER and FeNO were identified. Population PK simulations, exposure-response relationships and safety profiles of tezepelumab at doses up to 280 mg every 2 weeks suggested that no dose adjustment based on body weight or for adolescents was required. These results support the selection of 210 mg every 4 weeks subcutaneously as the dose for phase 3 studies of tezepelumab in adults and adolescents with severe asthma.

Keywords: exposure-response; pharmacokinetic-pharmacodynamic modeling; severe asthma; tezepelumab.

PubMed Disclaimer

References

    1. Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129-155.
    1. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673-680.
    1. Allakhverdi Z, Comeau MR, Jessup HK, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007;204(2):253-258.
    1. Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936-946.
    1. Gauvreau GM, O'Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102-2110.

Publication types

MeSH terms

Associated data