Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar:64:126704.
doi: 10.1016/j.jtemb.2020.126704. Epub 2020 Dec 14.

The protective effect of the cardiac thioredoxin system on the heart in the case of iron overload in mice

Affiliations

The protective effect of the cardiac thioredoxin system on the heart in the case of iron overload in mice

Sevda Altun et al. J Trace Elem Med Biol. 2021 Mar.

Abstract

Background: Iron, which is essential for many vital biological processes, causes significant clinical pathologies in the case of its deficiency or excess. Cardiovascular protective pathways are activated by iron therapy. However, determining the appropriate iron concentration is essential to protect heart tissue from iron-induced oxidative stress. The thioredoxin system is one of the antioxidant systems that protect cells against oxidative stress. Moreover, it allows the binding of many transcription factors for apoptosis, myocardial protection, the stimulation of cell proliferation, and angiogenesis processes, especially the regulation of the cardiovascular system. This study's goal was to understand how iron overload affects the gene and protein levels of the thioredoxin system in the mouse heart.

Methods: BALB/c mice were randomly separated into two groups. The iron overload group was administered with intraperitoneal injections of an iron-dextran solution twice a week for three weeks. In parallel, the control group was intraperitoneally given Dextran 5 solution. The total iron content, the total GSH level, the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and thioredoxin reductase 1 (TXNRD1) activity were demonstrated spectroscopically. Changes in the iron metabolism marker genes and thioredoxin system genes were examined by qPCR. The quantitative protein expression of TXNRD1 and thioredoxin-interacting protein (TXNIP) was examined by western blotting.

Results: The iron content of the heart increased in the iron overload group. The expression of hepcidin (Hamp) and ferroportin (Fpn) increased with iron overload. However, decreased expression was observed for ferritin (Fth). No changes were revealed in the GSH level and GSH/GSSG ratio. The gene expression of thioredoxin 1 (Txn1), Txnrd1, and Txnip did not change. TXNRD1 activity and protein expression increased significantly, while the protein expression of TXNIP decreased significantly.

Conclusion: In the case of iron overload, the cardiac thioredoxin system is affected by the protein level rather than the gene level. The amount and duration of iron overload used in this study may be considered as a starting point for further studies to determine appropriate conditions for the iron therapy of cardiovascular diseases.

Keywords: Iron overload; Mouse heart; Oxidative stress; Thioredoxin system.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources