An In Vitro Cell Culture Model for Pyoverdine-Mediated Virulence
- PMID: 33374230
- PMCID: PMC7824568
- DOI: 10.3390/pathogens10010009
An In Vitro Cell Culture Model for Pyoverdine-Mediated Virulence
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine's value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.
Keywords: Pseudomonas aeruginosa; macrophages; pyoverdine; virulence.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures





Similar articles
-
In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores.bioRxiv [Preprint]. 2023 Oct 16:2023.01.26.525796. doi: 10.1101/2023.01.26.525796. bioRxiv. 2023. Update in: Microbiol Spectr. 2024 Mar 5;12(3):e0369323. doi: 10.1128/spectrum.03693-23. PMID: 36747656 Free PMC article. Updated. Preprint.
-
In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores.Microbiol Spectr. 2024 Mar 5;12(3):e0369323. doi: 10.1128/spectrum.03693-23. Epub 2024 Feb 5. Microbiol Spectr. 2024. PMID: 38311809 Free PMC article.
-
High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa.Front Microbiol. 2017 Sep 5;8:1707. doi: 10.3389/fmicb.2017.01707. eCollection 2017. Front Microbiol. 2017. PMID: 28928729 Free PMC article.
-
Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions.Appl Microbiol Biotechnol. 2023 Feb;107(4):1019-1038. doi: 10.1007/s00253-022-12347-6. Epub 2023 Jan 12. Appl Microbiol Biotechnol. 2023. PMID: 36633626 Review.
-
Aspergillus-Pseudomonas interaction, relevant to competition in airways.Med Mycol. 2019 Apr 1;57(Supplement_2):S228-S232. doi: 10.1093/mmy/myy087. Med Mycol. 2019. PMID: 30816973 Review.
Cited by
-
A compensatory RNase E variation increases Iron Piracy and Virulence in multidrug-resistant Pseudomonas aeruginosa during Macrophage infection.PLoS Pathog. 2023 Apr 7;19(4):e1010942. doi: 10.1371/journal.ppat.1010942. eCollection 2023 Apr. PLoS Pathog. 2023. PMID: 37027441 Free PMC article.
-
Development and Characterization of High-Throughput Caenorhabditis elegans - Enterococcus faecium Infection Model.Front Cell Infect Microbiol. 2021 Apr 29;11:667327. doi: 10.3389/fcimb.2021.667327. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 33996637 Free PMC article.
-
Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa.bioRxiv [Preprint]. 2023 Oct 13:2023.10.13.562257. doi: 10.1101/2023.10.13.562257. bioRxiv. 2023. Update in: Infect Immun. 2024 Mar 12;92(3):e0040723. doi: 10.1128/iai.00407-23. PMID: 37873290 Free PMC article. Updated. Preprint.
-
In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores.bioRxiv [Preprint]. 2023 Oct 16:2023.01.26.525796. doi: 10.1101/2023.01.26.525796. bioRxiv. 2023. Update in: Microbiol Spectr. 2024 Mar 5;12(3):e0369323. doi: 10.1128/spectrum.03693-23. PMID: 36747656 Free PMC article. Updated. Preprint.
-
Systematic characterization of plant-associated bacteria that can degrade indole-3-acetic acid.PLoS Biol. 2024 Nov 26;22(11):e3002921. doi: 10.1371/journal.pbio.3002921. eCollection 2024 Nov. PLoS Biol. 2024. PMID: 39591453 Free PMC article.
References
-
- Kollef M.H., Chastre J., Fagon J.Y., Francois B., Niederman M.S., Rello J., Torres A., Vincent J.L., Wunderink R.G., Go K.W., et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit. Care Med. 2014;42:2178–2187. doi: 10.1097/CCM.0000000000000510. - DOI - PubMed
-
- Saint-Criq V., Villeret B., Bastaert F., Kheir S., Hatton A., Cazes A., Xing Z., Sermet-Gaudelus I., Garcia-Verdugo I., Edelman A., et al. LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway. Thorax. 2018;73:49–61. doi: 10.1136/thoraxjnl-2017-210298. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources