Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec 28;22(1):213.
doi: 10.3390/ijms22010213.

Hepatitis B Virus Cure: Targets and Future Therapies

Affiliations
Review

Hepatitis B Virus Cure: Targets and Future Therapies

Hye Won Lee et al. Int J Mol Sci. .

Abstract

Chronic hepatitis B virus (HBV) infection is a major global health problem. It can cause progressive liver fibrosis leading to cirrhosis with end-stage liver disease, and a markedly increased risk of hepatocellular carcinoma. In the last two decades, substantial progress has been made in the treatment of chronic hepatitis, B. However, HBV is often reactivated after stopping nucloes(t)ide analogues because antivirals alone do not directly target covalently closed circular DNA, which is the template for all viral RNAs. Therefore, although currently available antiviral therapies achieve suppression of HBV replication in the majority of patients, hepatitis B surface antigen (HBsAg) loss and seroconversion is rarely achieved despite long-term antiviral treatment (HBsAg loss of less than 10% in 5 years). Various clinical trials of agents that interrupt the HBV life cycle in hepatocytes have been conducted. Potential treatment strategies and new agents are emerging as HBV cure. A combination of current and new anti-HBV agents may increase the rate of HBsAg seroclearance; thus, optimized regimens must be validated. Here, we review the newly investigated therapeutic compounds and the results of preclinical and/or clinical trials.

Keywords: cure; hepatitis B; target; treatment.

PubMed Disclaimer

Conflict of interest statement

Ahn, S.H. has acted as advisors and lecturers for BMS, Gilead Sciences, MSD, AbbVie, Janssen, Assembly Biosciences, Arbutus Biopharma, GreenCross, Ildong. SHA has received unrestricted grant from Gilead Sciences for the investigator initiated trials.

Figures

Figure 1
Figure 1
Targets of hepatitis B virus replication in hepatocytes. HBV, hepatitis B virus; NTCP, Na(sodium) taurocholate co-transporting polypeptide; rcDNA, relaxed circular DNA; cccDNA, covalently closed circular DNA; pgRNA, pregenomic RNA; CpAMs, core protein assembly modulators; NAs, nucleos(t)ide analogues.

References

    1. Nassal M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis, B. Gut. 2015;64:1972–1984. doi: 10.1136/gutjnl-2015-309809. - DOI - PubMed
    1. Liang T.J., Block T.M., McMahon B.J., Ghany M.G., Urban S., Guo J.T., Locarnini S., Zoulim F., Chang K.M., Lok A.S. Present and future therapies of hepatitis B: From discovery to cure. Hepatology. 2015;62:1893–1908. doi: 10.1002/hep.28025. - DOI - PMC - PubMed
    1. Seeger C., Mason W.S. Molecular biology of hepatitis B virus infection. Virology. 2015;479:672–686. doi: 10.1016/j.virol.2015.02.031. - DOI - PMC - PubMed
    1. Yan H., Zhong G., Xu G., He W., Jing Z., Gao Z., Huang Y., Qi Y., Peng B., Wang H., et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife. 2012;1:e00049. doi: 10.7554/eLife.00049. - DOI - PMC - PubMed
    1. Blanchet M., Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J. Virol. 2007;81:5841–5849. doi: 10.1128/JVI.00096-07. - DOI - PMC - PubMed

MeSH terms

Substances