Adaptive Time Propagation for Time-dependent Schrödinger equations
- PMID: 33381631
- PMCID: PMC7749873
- DOI: 10.1007/s40819-020-00937-9
Adaptive Time Propagation for Time-dependent Schrödinger equations
Abstract
We compare adaptive time integrators for the numerical solution of linear Schrödinger equations where the Hamiltonian explicitly depends on time. The approximation methods considered are splitting methods, where the time variable is split off and advanced separately, and commutator-free Magnus-type methods. The time-steps are chosen adaptively based on asymptotically correct estimators of the local error in both cases. It is found that splitting methods are more efficient when the Hamiltonian naturally suggests a separation into kinetic and potential part, whereas Magnus-type integrators excel when the structure of the problem only allows to advance the time variable separately.
Keywords: Adaptive stepsize selection; Magnus-type integrators; Splitting methods; Time-dependent Schrödinger equations.
© The Author(s) 2020.
References
-
- Alverman A, Fehske H. High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 2011;230:5930–5956. doi: 10.1016/j.jcp.2011.04.006. - DOI
-
- Auzinger W, Březinová I, Hofstätter H, Koch O, Quell M. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part II: comparisons of local error estimation and step-selection strategies for nonlinear Schrödinger and wave equations. Comput. Phys. Commun. 2019;234:55–71. doi: 10.1016/j.cpc.2018.08.003. - DOI
-
- Auzinger, W., Dubois, J., Held, K., Hofstätter, H., Jawecki, T., Kauch, A., Koch, O., Kropielnicka, K., Singh, P., Watzenböck, C.: Efficient Magnus-type integrators for Hubbard models of solar cells. Submitted
-
- Auzinger W, Herfort W. Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opusc. Math. 2014;34:243–255. doi: 10.7494/OpMath.2014.34.2.243. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources