Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 5:250:119350.
doi: 10.1016/j.saa.2020.119350. Epub 2020 Dec 22.

Molecular binding interaction of pyridinium based gemini surfactants with bovine serum albumin: Insights from physicochemical, multispectroscopic, and computational analysis

Affiliations

Molecular binding interaction of pyridinium based gemini surfactants with bovine serum albumin: Insights from physicochemical, multispectroscopic, and computational analysis

Jeenat Aslam et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

To study the interaction of the series of pyridinium based gemini surfactants (GS) (referred to as m-Py-m, m = 14, 16); 4,4'-(propane-1,3-diyl)bis(1-(2-(tetradecyloxy)-2-oxoethyl) dipyridinium chloride (14-Py-14), and 4,4'-(propane-1,3-diyl) bis(1-(2-(hexadecyloxy)-2-oxoethyl)dipyridinium chloride (16-Py-16) with bovine serum albumin (BSA), various physicochemical and spectroscopic tools such as tensiometry, steady-state fluorescence, synchronous fluorescence, pyrene fluorescence, UV-visible, far-UV circular dichroism (CD) were utilized at physiological pH (7.4) and 298 K in combination with computational molecular modeling analysis. The tensiometric results show significant modifications in interfacial and thermodynamic parameters for m-Py-m GS upon BSA combination, deciphering the gemini surfactant-BSA interaction. Steady-state fluorescence analysis evaluates the structural alterations of BSA with the addition of m-Py-m GS. The plots of Stern-Volmer, modified Stern-Volmer, and thermodynamic parameters were used to determine the binding type of m-Py-m GS to BSA. The synchronous fluorescence spectra state a mild effect of gemini surfactants on the emission intensity of tyrosine (Tyr) residues, on the other hand, tryptophan (Trp) residues showed a significant effect. Post addition of GS, the plot of pyrene fluorescence reveals the mild micropolarity fluctuations via the probe (pyrene) molecules encapsulated in BSA. UV-visible experiments support the complex formation between the BSA and m-Py-m GS. Far-UV CD measurements revealed the modifications in the secondary structure of protein produced by m-Py-m GS. Furthermore, we also used the computational molecular modeling for attaining deep insight into BSA and m-Py-m GS binding and the results are supported with our experimental results.

Keywords: BSA; Fluorescence quenching; Gemini surfactant; Interaction; Molecular modeling.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources