Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;43(5):2081-2103.
doi: 10.1007/s10653-020-00785-y. Epub 2021 Jan 3.

Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India

Affiliations

Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India

Shilpi Mondal et al. Environ Geochem Health. 2021 May.

Abstract

Dust samples were collected from roads of five distinct types of land use zones (National Highway, residential areas, sensitive areas, mining areas, and busy traffic areas) of Dhanbad to determine the pollution characteristics, health risk, and identifying the source of trace elements. The dust samples were segregated into ≤ 60 µm and trace elements like Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were analysed. Concentrations of Cd, Cr, Cu, Fe, and Mn were observed highest in the mining areas, whereas Ni, Pb, and Zn presented higher concentration values at National Highway and busy traffic zones. Cd showed highest geo-accumulation index (Igeo), contamination factor (Cf), and ecological risk (ER) among all the trace elements. The health risk assessment model was performed to assess the health effects of carcinogenic and non-carcinogenic pollutants caused due to multi-elemental exposure on adults and children. The significantly higher HQ (Hazard Quotient) and HI (Hazard Index) values posed by Cr, Fe, and Mn indicated potential non-carcinogenic risks to the people of Dhanbad. Similarly, values of CR (Cancer Risk) for Cd, Cr and Ni were within the range of 10-6-10-4, which indicated to cause carcinogenic risk to the population by the exposure of road dust. Principal Component Analysis (PCA) and Pearson correlation showed that coal mining activities in Jharia coalfield, coal-based industries like coke-oven plants, coal washeries and heavy vehicular load in the roads of Dhanbad were the major causes of emission of these trace elements.

Keywords: Dhanbad; Human health risk; Pollution assessment; Road dust; Source apportionment; Trace elements.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martínez-Martínez, S. (2014). Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. Journal of Geochemical Exploration, 144, 298–305.
    1. Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017.
    1. Ali, M. U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M. A. M., & Fu, B. (2017). Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere, 181, 111–121. https://doi.org/10.1016/j.chemosphere.2017.04.061 . - DOI
    1. Al-Khashman, O. A. (2004). Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate Jordan. Atmospheric Environment, 38(39), 6803–6812.
    1. Alloway, B. J. (Ed.). (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Dordrecht, Netherlands: Springer.

MeSH terms

LinkOut - more resources