Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Feb 5;263(4):2055-63.

Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells

Affiliations
  • PMID: 3339002
Free article

Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells

K M Walton et al. J Biol Chem. .
Free article

Abstract

Ganglioside expression and tetanus toxin binding were studied in the rat pheochromocytoma cell line PC12. Seven ganglioside species were readily detected in extracts of PC12 cells; two were identified as tri- and tetrasialogangliosides, which are common brain constituents but unusual components of neuronal cell lines. Carbohydrate composition, acid and enzyme hydrolyses, and mass spectral analysis revealed that the major species is GT 1b, a predominant mammalian brain ganglioside previously reported to support high affinity tetanus toxin binding (Rogers, T. B., and Snyder, S. H. (1981) J. Biol. Chem. 256, 2402-2407). Direct binding of 125I-tetanus toxin to PC12 gangliosides on TLC plates revealed selective binding to the tri- and tetrasialogangliosides. Radioiodinated toxin also bound with high affinity to intact PC12 cells or their isolated membranes. The binding affinity (Kd = 1.25 nM), density of receptors (Bmax = 238 pmol/mg of membrane protein), and dependence on pH, ionic strength, and temperature were similar to those previously reported for toxin binding to rat brain synaptic membranes. Differentiation of PC12 cells caused an increase in expression of the tri- and tetrasialogangliosides and a closely matched increase in tetanus toxin binding to cell membranes. These data provide evidence that complex gangliosides may act as tetanus toxin receptors, and demonstrate the utility of the PC12 cell line for studies of tetanus toxicity and complex ganglioside expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources