Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 31;63(2):195-197.
doi: 10.2334/josnusd.20-0411. Epub 2020 Dec 30.

Reactive oxygen species-dependent release of damage-associated molecular patterns from human gingival epithelial Ca9-22 cells during butyrate or propionate exposure

Affiliations
Free article

Reactive oxygen species-dependent release of damage-associated molecular patterns from human gingival epithelial Ca9-22 cells during butyrate or propionate exposure

Yui Fujiwara et al. J Oral Sci. .
Free article

Abstract

Treating the gingival epithelial Ca9-22 cell with butyrate, a short-chain fatty acid (SCFA) produced by bacteria within mature dental plaque, induces necrotic cellular death. In this report, it was examined whether SCFA-mediated cellular death is accompanied by a release of damage-associated molecular patterns (DAMPs). In addition, the role of reactive oxygen species (ROS) in the release of DAMPs was evaluated. Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate. The amounts of dead cells were then measured using SYTOX-green dye. Released DAMPs were detected by western blot. The role of ROS scavengers, ascorbic acid and N-acetylcysteine, on DAMP-release was evaluated. Dose and time-dependent induction of Ca9-22 cell death was observed during butyrate and propionate treatments. This was accompanied by the release of DAMPs. Ascorbic acid or N-acetylcysteine reduced cellular death and inhibited DAMP-release induced by exposure to butyrate or propionate. These data collectively suggest that SCFA-induced death of gingival epithelial Ca9-22 cells and accompanying release of DAMPs are dependent on ROS.

Keywords: DAMPs; ROS; SCFAs; cellular death; gingival epithelial cells.

PubMed Disclaimer

LinkOut - more resources