Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
- PMID: 33390943
- PMCID: PMC7775580
- DOI: 10.3389/fphar.2020.565644
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Abstract
Generative models are becoming a tool of choice for exploring the molecular space. These models learn on a large training dataset and produce novel molecular structures with similar properties. Generated structures can be utilized for virtual screening or training semi-supervized predictive models in the downstream tasks. While there are plenty of generative models, it is unclear how to compare and rank them. In this work, we introduce a benchmarking platform called Molecular Sets (MOSES) to standardize training and comparison of molecular generative models. MOSES provides training and testing datasets, and a set of metrics to evaluate the quality and diversity of generated structures. We have implemented and compared several molecular generation models and suggest to use our results as reference points for further advancements in generative chemistry research. The platform and source code are available at https://github.com/molecularsets/moses.
Keywords: benchmark; deep learning; distribution learning; drug discovery; generative models.
Copyright © 2020 Polykovskiy, Zhebrak, Sanchez-Lengeling, Golovanov, Tatanov, Belyaev, Kurbanov, Artamonov, Aladinskiy, Veselov, Kadurin, Johansson, Chen, Nikolenko, Aspuru-Guzik and Zhavoronkov.
Conflict of interest statement
DP, AZhe, VA, MV, and AZha work for Insilico Medicine, a commercial artificial intelligence company. SG, OT, SB, RK, AA, and SN work for Neuromation OU, a company engaged in AI development through synthetic data and generative models. SJ and HC work for a pharmaceutical company AstraZeneca. AA-G is a cofounder and board member of, and consultant for, Kebotix, an artificial intelligence-driven molecular discovery company and a member of the science advisory board of Insilico Medicine.
Figures




References
-
- Benhenda M. (2017). ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? Available from: https://arxiv.org/abs/1708.08227.
LinkOut - more resources
Full Text Sources
Other Literature Sources