Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 26;15(1):288-308.
doi: 10.1021/acsnano.0c10229. Epub 2021 Jan 4.

Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives

Affiliations

Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives

Jungjae Park et al. ACS Nano. .

Abstract

Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.

Keywords: battery materials; graphene; graphene liquid cell; in situ electron microscopy; life science; liquid-phase transmission electron microscopy; mineralization; nanoparticle; operando electron microscopy.

PubMed Disclaimer

Publication types

LinkOut - more resources