PRRSV detection by qPCR in processing fluids and serum samples collected in a positive stable breeding herd following mass vaccination of sows with a modified live vaccine
- PMID: 33397484
- PMCID: PMC7783972
- DOI: 10.1186/s40813-020-00186-8
PRRSV detection by qPCR in processing fluids and serum samples collected in a positive stable breeding herd following mass vaccination of sows with a modified live vaccine
Abstract
In the last two decades, in France, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) stabilization protocols have been implemented using mass vaccination with a modified live vaccine (MLV), herd closure and biosecurity measures. Efficient surveillance for PRRSV is essential for generating evidence of absence of viral replication and transmission in pigs. The use of processing fluid (PF) was first described in 2018 in the United States and was demonstrated to provide a higher herd-level sensitivity compared with blood samples (BS) for PRRSV monitoring. In the meantime, data on vertical transmission of MLV viruses are rare even as it is a major concern. Therefore, veterinarians usually wait for several weeks after a sow mass vaccination before starting a stability monitoring. This clinical study was conducted in a PRRSV-stable commercial 1000-sow breed-to-wean farm. This farm suffered from a PRRS outbreak in January 2018. After implementing a stabilisation protocol, this farm was controlled as stable for more than 9 months before the beginning of the study. PF and BS at weaning were collected in four consecutive batches born after a booster sow mass MLV vaccination. We failed to detect PRRSV by qPCR on PF and BS collected in a positive-stable breeding herd after vaccination with ReproCyc® PRRS EU (Boehringer Ingelheim, Ingelheim, Germany).
Keywords: Modified-live vaccination; Monitoring; PRRSV; Processing fluid; Swine.
Conflict of interest statement
IM and NR are employed by Boehringer Ingelheim Animal Health France (Swine Business Unit, 16, rue Louis Pasteur, 44119 Treillères, France) and were not involved in the collection, analysis and interpretation of the data.
Figures
References
-
- Berton P, Normand V, Martineau G-P, Bouchet F, Lebret A, Waret-Szkuta A. Evaluation of porcine reproductive and respiratory syndrome stabilization protocols in 23 French farrow-to-finish farms located in a high-density swine area. Porcine Health Manage. 2017;3:11. doi: 10.1186/s40813-017-0058-1. - DOI - PMC - PubMed
-
- Eclercy J, Renson P, Lebret A, Hirchaud E, Normand V, Andraud M, et al. A field recombinant strain derived from two type 1 porcine reproductive and respiratory syndrome virus (PRRSV-1) modified live vaccines shows increased Viremia and transmission in SPF pigs. Viruses. 2019;11:296. doi: 10.3390/v11030296. - DOI - PMC - PubMed
-
- Holtkamp DJ, Morrison B, Rowland RR, Snelson H. Terminology for classifying swine herds by porcine reproductive and respiratory syndrome virus status. J Swine Health Prod. 2011;19:13. - PubMed
-
- Kittawornrat A, Panyasing Y, Goodell C, Wang C, Gauger P, Harmon K, et al. Porcine reproductive and respiratory syndrome virus (PRRSV) surveillance using pre-weaning oral fluid samples detects circulation of wild-type PRRSV. Vet Microbiol. 2014;168:331–339. doi: 10.1016/j.vetmic.2013.11.035. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
