Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar;18(3):196-208.
doi: 10.1038/s41575-020-00390-5. Epub 2021 Jan 4.

The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods

Affiliations
Review

The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods

Maria L Marco et al. Nat Rev Gastroenterol Hepatol. 2021 Mar.

Abstract

An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.

PubMed Disclaimer

Conflict of interest statement

M.L.M. has been compensated for consulting, speaking fees or service on advisory boards for the Kerry Health and Nutrition Institute and the Icelandic Milk & Skyr Corporation. M.E.S. has been compensated for funding or speaking engagements or for consulting from Associated British Foods, California Dairy Research Foundation, Cargill, Danone Research, Danone USA, Fairlife, General Mills, GlaxoSmithKline, JJ Heimbach, Kellogg, Kerry, Mead Johnson, Medscape, PepsiCo, Pfizer, Probi, Procter & Gamble, Trouw Nutrition, Visalia Dairy Company, Winclove Probiotics and Yakult. P.D.C. has research grants with several industry partners and is the co-founder and Chief Technology Officer of SeqBiome. C.H. serves on the board of International Scientific Association for Probiotics and Prebiotics (ISAPP), is a consultant to Artugen Therapeutics developing a live biotherapeutic and has research grants with several industry partners. W.H. has been compensated for consulting by SymbioPharm, received research grants from industry partners and is co-founder and Chief Technology Officer of HEM. S.L. serves on the board of ISAPP, is chair of the Scientific Advisory Board of Yun, has been compensated for speaking by Yakult and has research grants with several industry partners. D.M. serves on the board of ISAPP and has consulted for Bayer, Pharmavite and Dupont. G.R. serves on the board of ISAPP and has received fees from Seed, Danone, Acerus Pharma and KGK Science. R.H. serves on the board of ISAPP, has received grants or honoraria from Mead Johnson Nutrition, Pharmavite, Danone, Beachbody and PepsiCo, and is a co-owner of Synbiotic Health. M.G.G., M.C.A., L.D.V. and B.E.W. declare no competing interests.

Figures

Fig. 1
Fig. 1. Processes that determine community assembly in traditional fermented foods.
The conditions established during traditional and industrial fermentations provide a basis for controlling and manipulating autochthonous and allochthonous microorganisms. Microbial communities in spontaneous food fermentations are determined by dispersal and selection. In most spontaneously fermented foods, plant-associated or animal-associated microorganisms are dominant. Back-slopping of fermented foods eliminates dispersal limitation, and selection is the major principle that determines community assembly. Among lactic acid bacteria (LAB), nomadic and free-living species are dominant in spontaneous food fermentations while host-adapted species dominate many back-slopped fermentations. Speciation and domestication have been demonstrated for eukaryotic food fermenting organisms, including Saccharomyces cerevisiae and Aspergillus oryzae, but not for bacteria,. If comparable raw materials and fermentation protocols are employed, community assembly in fermented foods is reproducible at the genus level (spontaneous food fermentations) or even at the species level (back-slopped food fermentations). The assignment of lifestyles to food-fermenting lactobacilli has been previously described. aw, water activity.
Fig. 2
Fig. 2. Mechanistic basis for the health benefits of fermented foods.
Health benefits, beyond the nutritional contributions of the raw ingredients, result from the removal, synthesis and transformation of the food components during fermentation by the activities of fermentation-associated microorganisms. Such actions can result in improved nutritive value of the food (for example, through phytate detoxification or vitamin synthesis) or in the generation of biologically active compounds (for example, bioactive peptides or conjugated linoleic acid). Food constituents and fermentation products, along with any remaining viable fermentation microorganisms, are consumed and enter the intestinal tract. Those microorganisms, along with resident members of the gut microbiota, might further transform food constituents in vivo into bioactive substances such as peptides, bacteriocins, amino acids, conjugated linoleic acid or organic acids. The constituents of fermented foods and fermentation-associated microorganisms and their cell products can interact with gut microbiota, the intestinal epithelium or the host immune system. SCFAs, short-chain fatty acids.

References

    1. Arranz-Otaegui A, Gonzalez Carretero L, Ramsey MN, Fuller DQ, Richter T. Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. Proc. Natl Acad. Sci. USA. 2018;115:7925–7930. - PMC - PubMed
    1. Hayden B, Canuel N, Shanse J. What was brewing in the natufian? an archaeological assessment of brewing technology in the Epipaleolithic. J. Archeol. Method. Theory. 2013;20:102–150.
    1. Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002;79:3–16. - PubMed
    1. Steinkraus, K. H. In Fermented Food Beverages in Nutrition (ed Gastineau C. F., Darby W. J., Turner T. B.) 36–50 (Academic Press, 1979).
    1. Segurel L, Bon C. On the evolution of lactase persistence in humans. Annu. Rev. Genomics Hum. Genet. 2017;18:297–319. - PubMed

Publication types