Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 2;22(1):401.
doi: 10.3390/ijms22010401.

Epigenetics of Aging and Aging-Associated Diseases

Affiliations
Review

Epigenetics of Aging and Aging-Associated Diseases

Dominik Saul et al. Int J Mol Sci. .

Abstract

Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.

Keywords: CDKN2A; aging; aging-associated diseases; diabetes; epigenetics; gene expression; histone modifications; histones; osteoporosis; sarcopenia.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Epigenetics of aging and aging-related diseases. During aging, various epigenetic alterations occur including accumulation of histone variants, changes in chromatin accessibility mediated by chromatin remodeling complexes, loss of histones and heterochromatin, imbalance of activating/repressing histone modifications and aberrant expression/activity of miRNAs. These deregulations can affect transcription and, subsequently, translation, as well as the stabilization or degradation of molecular components. Consequently, these aberrant epigenetic processes can promote morbidities, which are frequently observed in the elderly populations, including inflammation, cancer, osteoporosis, neurodegenerative diseases, and diabetes.

References

    1. Kennedy B.K., Berger S.L., Brunet A., Campisi J., Cuervo A.M., Epel E.S., Franceschi C., Lithgow G.J., Morimoto R.I., Pessin J.E., et al. Geroscience: Linking aging to chronic disease. Cell. 2014;159:709–713. doi: 10.1016/j.cell.2014.10.039. - DOI - PMC - PubMed
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. - DOI - PMC - PubMed
    1. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–260. doi: 10.1038/38444. - DOI - PubMed
    1. Richmond T.J., Davey C.A. The structure of DNA in the nucleosome core. Nature. 2003;423:145–150. doi: 10.1038/nature01595. - DOI - PubMed
    1. Torres I.O., Fujimori D.G. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr. Opin. Struct. Biol. 2015;35:68–75. doi: 10.1016/j.sbi.2015.09.007. - DOI - PMC - PubMed

MeSH terms