Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Jan 5;12(1):24.
doi: 10.1038/s41467-020-19366-9.

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability

Vasiliki Lagou #  1   2   3 Reedik Mägi #  4 Jouke- Jan Hottenga #  5   6 Harald Grallert  7   8 John R B Perry  9 Nabila Bouatia-Naji  10   11   12 Letizia Marullo  13 Denis Rybin  14 Rick Jansen  15 Josine L Min  16   17 Antigone S Dimas  18 Anna Ulrich  19 Liudmila Zudina  19 Jesper R Gådin  20 Longda Jiang  19   21 Alessia Faggian  19 Amélie Bonnefond  10   11   19 Joao Fadista  22 Maria G Stathopoulou  23 Aaron Isaacs  24   25   26 Sara M Willems  24 Pau Navarro  27 Toshiko Tanaka  28 Anne U Jackson  29 May E Montasser  30 Jeff R O'Connell  30 Lawrence F Bielak  31 Rebecca J Webster  32 Richa Saxena  33   34   35   36 Jeanette M Stafford  37 Beate St Pourcain  16   17 Nicholas J Timpson  16   17 Perttu Salo  38 So-Youn Shin  39 Najaf Amin  40 Albert V Smith  29   41   42 Guo Li  43   44 Niek Verweij  45 Anuj Goel  1   46 Ian Ford  47 Paul C D Johnson  47   48 Toby Johnson  49   50 Karen Kapur  51 Gudmar Thorleifsson  52 Rona J Strawbridge  53   54   55 Laura J Rasmussen-Torvik  56 Tõnu Esko  4 Evelin Mihailov  4 Tove Fall  57 Ross M Fraser  58   59 Anubha Mahajan  1   60 Stavroula Kanoni  49   61 Vilmantas Giedraitis  62 Marcus E Kleber  63 Günther Silbernagel  64 Julia Meyer  65 Martina Müller-Nurasyid  65   66   67   68 Andrea Ganna  69   70   71 Antti-Pekka Sarin  72   73 Loic Yengo  10   11   21 Dmitry Shungin  74   75   76 Jian'an Luan  9 Momoko Horikoshi  1   77   78 Ping An  79 Serena Sanna  80   81 Yvonne Boettcher  82   83 N William Rayner  1   61   77 Ilja M Nolte  84 Tatijana Zemunik  85 Erik van Iperen  86 Peter Kovacs  83 Nicholas D Hastie  27 Sarah H Wild  58 Stela McLachlan  58 Susan Campbell  27 Ozren Polasek  85 Olga Carlson  87 Josephine Egan  87 Wieland Kiess  83   88 Gonneke Willemsen  5 Johanna Kuusisto  89 Markku Laakso  89 Maria Dimitriou  90 Andrew A Hicks  91 Rainer Rauramaa  92   93 Stefania Bandinelli  94 Barbara Thorand  8   95 Yongmei Liu  96 Iva Miljkovic  97 Lars Lind  98 Alex Doney  99 Markus Perola  38   72   100 Aroon Hingorani  101 Mika Kivimaki  101 Meena Kumari  101   102 Amanda J Bennett  77 Christopher J Groves  77 Christian Herder  8   103   104 Heikki A Koistinen  105   106   107 Leena Kinnunen  105 Ulf de Faire  108 Stephan J L Bakker  109 Matti Uusitupa  110 Colin N A Palmer  99 J Wouter Jukema  111   112 Naveed Sattar  113 Anneli Pouta  114   115 Harold Snieder  84 Eric Boerwinkle  116   117 James S Pankow  118 Patrik K Magnusson  119 Ulrika Krus  120 Chiara Scapoli  13 Eco J C N de Geus  5   6 Matthias Blüher  82   121 Bruce H R Wolffenbuttel  122 Michael A Province  79 Goncalo R Abecasis  29 James B Meigs  70   123   124 G Kees Hovingh  125   126 Jaana Lindström  127 James F Wilson  27   58 Alan F Wright  27 George V Dedoussis  90 Stefan R Bornstein  128 Peter E H Schwarz  129   130   131 Anke Tönjes  82   83 Bernhard R Winkelmann  132 Bernhard O Boehm  133 Winfried März  63   134 Andres Metspalu  4 Jackie F Price  58 Panos Deloukas  49   61   135 Antje Körner  83   136 Timo A Lakka  92   137 Sirkka M Keinanen-Kiukaanniemi  138   139 Timo E Saaristo  140   141 Richard N Bergman  142 Jaakko Tuomilehto  143   144   145   146 Nicholas J Wareham  9 Claudia Langenberg  9 Satu Männistö  105 Paul W Franks  75   147   148 Caroline Hayward  27 Veronique Vitart  27 Jaakko Kaprio  72   144 Sophie Visvikis-Siest  23 Beverley Balkau  149   150 David Altshuler  33   34   124 Igor Rudan  58 Michael Stumvoll  82   83 Harry Campbell  58 Cornelia M van Duijn  24   151 Christian Gieger  7   8   95 Thomas Illig  7   152   153 Luigi Ferrucci  154 Nancy L Pedersen  119 Peter P Pramstaller  91   155   156 Michael Boehnke  29 Timothy M Frayling  157 Alan R Shuldiner  30   158 Patricia A Peyser  31 Sharon L R Kardia  31 Lyle J Palmer  159 Brenda W Penninx  15 Pierre Meneton  160 Tamara B Harris  161 Gerjan Navis  109 Pim van der Harst  45   81 George Davey Smith  162 Nita G Forouhi  9 Ruth J F Loos  9   163 Veikko Salomaa  164 Nicole Soranzo  39 Dorret I Boomsma  5 Leif Groop  72   120 Tiinamaija Tuomi  72   120   165   166 Albert Hofman  40   167   168 Patricia B Munroe  49   50 Vilmundur Gudnason  41   169 David S Siscovick  43   44   170 Hugh Watkins  1   46 Cecile Lecoeur  10   11 Peter Vollenweider  171 Anders Franco-Cereceda  172 Per Eriksson  20 Marjo-Riitta Jarvelin  173   174 Kari Stefansson  52   175 Anders Hamsten  53   54   176 George Nicholson  177 Fredrik Karpe  77   178 Emmanouil T Dermitzakis  179 Cecilia M Lindgren  1   33   77   180 Mark I McCarthy  1   77   178   60 Philippe Froguel  10   11   19 Marika A Kaakinen  19   181 Valeriya Lyssenko  120   182 Richard M Watanabe  121   183   184 Erik Ingelsson  57   185   186 Jose C Florez  34   136 Josée Dupuis  187 Inês Barroso  39   188   189 Andrew P Morris  1   100   190   191 Inga Prokopenko  192   193   194   195   196 Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)
Affiliations
Meta-Analysis

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability

Vasiliki Lagou et al. Nat Commun. .

Erratum in

  • Publisher Correction: Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.
    Lagou V, Mägi R, Hottenga JJ, Grallert H, Perry JRB, Bouatia-Naji N, Marullo L, Rybin D, Jansen R, Min JL, Dimas AS, Ulrich A, Zudina L, Gådin JR, Jiang L, Faggian A, Bonnefond A, Fadista J, Stathopoulou MG, Isaacs A, Willems SM, Navarro P, Tanaka T, Jackson AU, Montasser ME, O'Connell JR, Bielak LF, Webster RJ, Saxena R, Stafford JM, Pourcain BS, Timpson NJ, Salo P, Shin SY, Amin N, Smith AV, Li G, Verweij N, Goel A, Ford I, Johnson PCD, Johnson T, Kapur K, Thorleifsson G, Strawbridge RJ, Rasmussen-Torvik LJ, Esko T, Mihailov E, Fall T, Fraser RM, Mahajan A, Kanoni S, Giedraitis V, Kleber ME, Silbernagel G, Meyer J, Müller-Nurasyid M, Ganna A, Sarin AP, Yengo L, Shungin D, Luan J, Horikoshi M, An P, Sanna S, Boettcher Y, Rayner NW, Nolte IM, Zemunik T, Iperen EV, Kovacs P, Hastie ND, Wild SH, McLachlan S, Campbell S, Polasek O, Carlson O, Egan J, Kiess W, Willemsen G, Kuusisto J, Laakso M, Dimitriou M, Hicks AA, Rauramaa R, Bandinelli S, Thorand B, Liu Y, Miljkovic I, Lind L, Doney A, Perola M, Hingorani A, Kivimaki M, Kumari M, Bennett AJ, Groves CJ, Herder C, Koistinen HA, Kinnunen L, Faire U, Bakker SJL, Uusitupa M, Palmer CNA, Jukema JW, Sattar N, Pouta A, Snieder H, Boerwink… See abstract for full author list ➔ Lagou V, et al. Nat Commun. 2021 Feb 8;12(1):995. doi: 10.1038/s41467-021-21276-3. Nat Commun. 2021. PMID: 33558525 Free PMC article. No abstract available.

Abstract

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.

PubMed Disclaimer

Conflict of interest statement

A.R.S. is an employee of Regeneron Pharmaceuticals. As of Januray 2020, A.Mahajan is an employee of Genentech, and a holder of Roche stock. E.I. is a scientific advisor for Precision Wellness, Cellink and Olink Proteomics for work unrelated to the present project. Gudmar Thorleifsson and Kari Stefansson are employed by deCODE 4 Genetics/Amgen inc. I.B. and spouse own stock in GlaxoSmithKline and Incyte. J.C.F. has received consulting honoraria from Pfizer and PanGenX. L.G. has received research funding from Pfizer Inc., Regeneron Pharmaceuticals, Eli Lilly and Astra Zeneca. The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. M.I.M. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, M.I.M is an employee of Genentech, and a holder of Roche stock. V.S. has received honoraria for consultations from Sanofi and Novo Nordisk and travel support from Novo Nordisk. He also has ongoing research collaboration with Bayer Ltd. Other authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Miami plots of sex-specific associations.
a FI sex-specific associations, b FG sex-specific associations showing women on upper panel (all y axis values are positive) and men on lower panel (all x axis values are negative). Established or novel loci with sex-dimorphic effects (Psex-dimorphic ≤ 5.0 × 10−8) and nominal sex heterogeneity (Pheterogeneity < 0.05) are shown in magenta (larger effect in women) or cyan (larger effect in men). Novel genome-wide significant loci from sex-combined analyses with sex-homogeneous effects (Psex-combined ≤ 5.0 × 10−8) are shown in yellow. Established loci reaching genome-wide significance in sex-combined analyses and showing no sex heterogeneity (Pheterogeneity > 0.05) are colored in purple. All remaining established loci (i.e. no significant sex-dimorphic or sex-homogeneous effects) are marked in orange.
Fig. 2
Fig. 2. Plots for ZNF12 locus with sex-dimorphic effects on FI.
a female-specific regional plot, b male-specific regional plot, c ZNF12 whole blood RNA expression data in n = 3,621 Netherlands Twin Register and Netherlands Study of Anxiety and Depression studies. Beta ± SD (error bars) represent the sex effect in the linear regression analysis where the average gene expression by all probes in the gene was predicted by sex, as well as the following covariates: age, smoking status, RNA quality, hemoglobin, study, time of blood sampling, month of blood sampling, time between blood sampling and RNA extraction, and the time between RNA extraction and RNA amplification. A positive value represents an upregulated expression in women and a negative value an upregulated expression in men. The P value represents the significance of sex effect from the linear models (P values are not corrected for multiple testing). d ZNF12 tissue expression relative to three housekeeping genes (PPIA, B2M, and HPRT). For beta cell (n = 3) and islets (n = 3) data, lines are means. Quantitative RT-PCR was carried out using cDNAs from three human donors (beta-cells and islets). The other tissues were commercial cDNAs (one point observation).
Fig. 3
Fig. 3. Genetic correlations and causality.
a Genetic correlations for FI, b genetic correlations for FG. Phenotypes with statistically significant (P < 0.001) genetic correlations (calculated by LD score regression) with FI/FG in either women or men are plotted. The outer track shows estimates for all together, followed by those for women and men. Traits with I2 (sex heterogeneity) ≥50% are labeled with asterisks. Gray color indicates traits that do not show significant genetic correlation with the given glycemic trait. Estimates in black color indicate statistically significant associations. c bi-directional MR analysis between WHRadjBMI and FI with betas, standard errors of the estimates and P values from random-effect inverse-variance weighted regression given for men and women. AN anorexia nervosa, BMI body-mass index, EA educational attainment as of years of schooling 2016, FVC forced vital capacity, HbA1c glycated hemoglobin, HC hip circumference, HDL high-density lipoprotein cholesterol, HOMA-B homeostatic model assessment of beta cell function, HOMA-IR homeostatic model assessment of insulin resistance, leptin adjBMI leptin adjusted for BMI, Leptin not adjBMI leptin not adjusted for BMI, Obesity 1 obesity class 1, Obesity II obesity class II, Obesity III obesity class 3, T2D type 2 diabetes, TG triglycerides, WC waist circumference, WHR adjBMI waist-to-hip ratio adjusted for BMI, UKBB UK Biobank.
Fig. 4
Fig. 4. Power of tests for detecting sex heterogeneity through simulations.
The power of sex-combined, sex-dimorphic and female-specific analyses, as well as Cochran’s Q-test was evaluated under three scenarios of sex-effects: no sex heterogeneity at a CAF = 0.05 and b CAF = 0.1, effects on both sexes with the presence of heterogeneity between them at c CAF = 0.05 and d CAF = 0.1, an effect specific to one sex only, e.g., women at e CAF = 0.05 and f CAF = 0.1. The power at P < 5 × 10−8 is given for all three tests: sex-combined, sex-dimorphic and female-specific. The power for the heterogeneity test implemented in GWAMA (Cochran’s Q-test) is also given. Simulations are based on 70,000 men and 70,000 women. For each parameter setting, 10,000 replicates of data were generated. CAF is the causal variant allele frequency and beta is the effect size in SD units in women. Within each scenario, we considered two CAFs (0.05 and 0.1) and a range of betas (from 0 to 0.1) representing the effect size in SD units in women. For the no sex heterogeneity setting, the beta in men is the same as in women; for the sex-dimorphic setting, the beta in men is fixed at 0.05 SD units; for the female-specific setting, the beta in men is fixed at zero.

Comment in

References

    1. Faerch K, Borch-Johnsen K, Vaag A, Jorgensen T, Witte DR. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53:858–865. doi: 10.1007/s00125-010-1673-4. - DOI - PubMed
    1. Perreault L, et al. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care. 2008;31:1416–1421. doi: 10.2337/dc07-2390. - DOI - PMC - PubMed
    1. Rathmann W, Strassburger K, Giani G, Doring A, Meisinger C. Differences in height explain gender differences in the response to the oral glucose tolerance test. Diabet. Med. 2008;25:1374–1375. - PubMed
    1. Tramunt B, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63:453–461. doi: 10.1007/s00125-019-05040-3. - DOI - PMC - PubMed
    1. Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016;37:278–316. doi: 10.1210/er.2015-1137. - DOI - PMC - PubMed

Publication types

MeSH terms

Grants and funding