Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 25;61(1):481-492.
doi: 10.1021/acs.jcim.0c01019. Epub 2021 Jan 6.

Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential α2a Adrenoceptor Agonists

Affiliations

Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential α2a Adrenoceptor Agonists

Katherine J Schultz et al. J Chem Inf Model. .

Abstract

The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.

PubMed Disclaimer

Publication types

LinkOut - more resources