Short-term metformin ingestion by healthy older adults improves myoblast function
- PMID: 33406027
- PMCID: PMC8424538
- DOI: 10.1152/ajpcell.00469.2020
Short-term metformin ingestion by healthy older adults improves myoblast function
Abstract
Muscle progenitor cells (MPCs) in aged muscle exhibit impaired activation into proliferating myoblasts, thereby impairing fusion and changes in secreted factors. The antihyperglycemic drug metformin, currently studied as a candidate antiaging therapy, may have potential to promote function of aged MPCs. We evaluated the impact of 2 wk of metformin ingestion on primary myoblast function measured in vitro after being extracted from muscle biopsies of older adult participants. MPCs were isolated from muscle biopsies of community-dwelling older (4 male/4 female, ∼69 yr) adult participants before (pre) and after (post) the metformin ingestion period and studied in vitro. Cells were extracted from Young participants (4 male/4 female, ∼27 yr) to serve as a "youthful" comparator. MPCs from Old subjects had lower fusion index and myoblast-endothelial cell homing compared with Young, while Old MPCs, extracted after short-term metformin ingestion, performed better at both tasks. Transcriptomic analyses of Old MPCs (vs. Young) revealed decreased histone expression and increased myogenic pathway activity, yet this phenotype was partially restored by metformin. However, metformin ingestion exacerbated pathways related to inflammation signaling. Together, this study demonstrated that 2 wk of metformin ingestion induced persistent effects on Old MPCs that improved function in vitro and altered their transcriptional signature including histone and chromatin remodeling.
Keywords: aging; diabetes; satellite cells; senescence; skeletal muscle.
Conflict of interest statement
No conflicts of interest, financial or otherwise, are declared by the authors.
Figures
References
-
- Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21: 76–80, 2015. doi:10.1038/nm.3710. - DOI - PMC - PubMed
-
- Englund DA, Murach KA, Dungan CM, Figueiredo VC, Vechetti IJ Jr, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Depletion of resident muscle stem cells negatively impacts running volume, physical function and muscle hypertrophy in response to lifelong physical activity. Am J Physiol Cell Physiol 318: C1178–C1188, 2020. doi:10.1152/ajpcell.00090.2020. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
