Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 4;26(1):214.
doi: 10.3390/molecules26010214.

Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety

Affiliations

Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety

Magdalena Gajek et al. Molecules. .

Abstract

Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd-8 samples, Pb-9 samples, Cu-1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia - strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.

Keywords: CVAAS; ICP-MS; ICP-OES; PCA; beverages; multi-elemental analysis; trace elements; wine samples.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Procedure of sample preparation.
Figure 2
Figure 2
Box and whisker plot of pH value obtained for red (R), white (W), and rose (Ro) wines.
Figure 3
Figure 3
Projection of the cases on the factor-plane in 38 samples investigated in this study according to grape variety for the whole dataset [µg/L].
Figure 4
Figure 4
Hierarchical cluster dendrogram for 18 variables.

Similar articles

Cited by

References

    1. Rodrigues S.M., Otero M., Alves A., Coimbra J. Elemetal analysis for categorization of wines and authentication of their certified brand of origin. J. Food Compos. Anal. 2011;24:548–562. doi: 10.1016/j.jfca.2010.12.003. - DOI
    1. Dragusha B., Zogaj M., Ramadani X., Susaj L. Determination of some heavy metals in some wines of Kosovo. Int. J. Ecosyst. Ecol. Sci. 2017;7:635–638.
    1. Fabain M.P., Arrúa R.C., Vazquez F., Diaz M.P., Baroni M.V., Wunderlin D.A. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem. 2010;1:372–379. doi: 10.1016/j.foodchem.2009.05.085. - DOI
    1. Pawlaczyk A., Gajek M., Jozwik K., Szynkowska M.I. Multielemental Analysis of Various Kinds of Whisky. Molecules. 2019;24:1193. doi: 10.3390/molecules24071193. - DOI - PMC - PubMed
    1. Płotka-Wasylka J., Frankwski M., Simeonov V., Polkowska Ż., Namieśnik. J. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules. 2018;23:2886. doi: 10.3390/molecules23112886. - DOI - PMC - PubMed

LinkOut - more resources