Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2021 Jan 6;21(1):19.
doi: 10.1186/s12879-020-05731-y.

Toxic shock syndrome with a cytokine storm caused by Staphylococcus simulans: a case report

Affiliations
Case Reports

Toxic shock syndrome with a cytokine storm caused by Staphylococcus simulans: a case report

Ken Goda et al. BMC Infect Dis. .

Abstract

Background: Exotoxins secreted from Staphylococcus aureus or Streptococcus pyogenes act as superantigens that induce systemic release of inflammatory cytokines and are a common cause of toxic shock syndrome (TSS). However, little is known about TSS caused by coagulase-negative staphylococci (CoNS) and the underlying mechanisms. Here, we present a rare case of TSS caused by Staphylococcus simulans (S. simulans).

Case presentation: We report the case of a 75-year-old woman who developed pneumococcal pneumonia and bacteremia from S. simulans following an influenza infection. The patient met the clinical criteria for probable TSS, and her symptoms included fever of 39.5 °C, diffuse macular erythroderma, conjunctival congestion, vomiting, diarrhea, liver dysfunction, and disorientation. Therefore, the following treatment was initiated for bacterial pneumonia complicating influenza A with suspected TSS: meropenem (1 g every 8 h), vancomycin (1 g every 12 h), and clindamycin (600 mg every 8 h). Blood cultures taken on the day after admission were positive for CoNS, whereas sputum and pharyngeal cultures grew Streptococcus pneumoniae (Geckler group 4) and methicillin-sensitive S. aureus, respectively. However, exotoxins thought to cause TSS, such as TSS toxin-1 and various enterotoxins, were not detected. The patient's therapy was switched to cefazolin (2 g every 8 h) and clindamycin (600 mg every 8 h) for 14 days based on microbiologic test results. She developed desquamation of the fingers on hospital day 8 and was diagnosed with TSS. Conventional exotoxins, such as TSST-1, and S. aureus enterotoxins were not detected in culture samples. The serum levels of inflammatory cytokines, such as neopterin and IL-6, were high. CD8+ T cells were activated in peripheral blood. Vβ2+ population activation, which is characteristic for TSST-1, was not observed in the Vβ usage of CD8+ T cells in T cell receptor Vβ repertoire distribution analysis.

Conclusions: We present a case of S. simulans-induced TSS. Taken together, we speculate that no specific exotoxins are involved in the induction of TSS in this patient. A likely mechanism is uncontrolled cytokine release (i.e., cytokine storm) induced by non-specific immune reactions against CoNS proliferation.

Keywords: Coagulase-negative staphylococcus; Cytokine storm; Staphylococcus simulans; Toxic shock syndrome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Chest computed tomography on admission
Fig. 2
Fig. 2
Lymphocyte subpopulation distribution in peripheral blood
Fig. 3
Fig. 3
T cell receptor (TCR) Vβ repertoire distribution analysis in peripheral blood

References

    1. MacDonald KL, Osterholm MT, Hedberg CW, Schrock CG, Peterson GF, Jentzen JM, et al. Toxic shock syndrome. A newly recognized complication of influenza and influenzalike illness. JAMA. 1987;257:1053–1058. doi: 10.1001/jama.1987.03390080043027. - DOI - PubMed
    1. Centers for Disease Control and Prevention. Toxic shock syndrome (other than streptococcal) (TSS) 2011 case definition. https://wwwn.cdc.gov/nndss/conditions/toxic-shock-syndrome-other-than-st....
    1. Söderquist B, Källman J, Holmberg H, Vikerfors T, Kihlström E. Secretion of IL-6, IL-8 and G-CSF by human endothelial cells in vitro in response to Staphylococcus aureus and staphylococcal exotoxins. APMIS. 1998;106:1157–1164. doi: 10.1111/j.1699-0463.1998.tb00272.x. - DOI - PubMed
    1. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DYM, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26:42247. doi: 10.1128/CMR.00104-12. - DOI - PMC - PubMed
    1. Lina G, Fleer A, Etienne J, Greenland TB, Vandenesch F. Coagulase-negative staphylococci isolated from two cases of toxic shock syndrome lack superantigenic activity, but induce cytokine production. FEMS Immunol Med Microbiol. 1996;13:81–86. doi: 10.1111/j.1574-695X.1996.tb00219.x. - DOI - PubMed

Publication types

MeSH terms

Supplementary concepts