Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 7;11(1):2.
doi: 10.1186/s13395-020-00257-y.

Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D

Affiliations

Sarcoglycan A mutation in miniature dachshund dogs causes limb-girdle muscular dystrophy 2D

James R Mickelson et al. Skelet Muscle. .

Abstract

Background: A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified.

Methods: Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis.

Results: Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents.

Conclusions: This first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.

Keywords: Canine; Gene mutation; Genetics; Myopathy; Sarcoglycanopathy.

PubMed Disclaimer

Conflict of interest statement

The authors have no competing interests to declare.

Figures

Fig. 1
Fig. 1
Miniature dachshund dystrophic phenotype and pedigrees. A A miniature dachshund from Australia that was evaluated for persistently elevated creatine kinase activity and exercise intolerance. B Representative H&E stained cryosection from an affected dachshund showed degenerative (asterisk) and regenerative (arrow) changes consistent with a dystrophic phenotype. C One small and one large family that formed the primary basis for this report are presented. Males are designated as squares and females as circles. Cases are solid symbols, controls are open symbols labeled with an “N,” and dogs with unknown phenotypes are open symbols. The case (dog A1) with whole genome sequence data is indicated with an asterisk. Genotypes for the functional SGCA variant are provided for all dogs with available samples
Fig. 2
Fig. 2
Immunofluorescent staining and western blotting from a dystrophic miniature dachshund. A Immunofluorescent staining of muscle cryosections from a representative dystrophic miniature dachshund. Staining for the rod-domain of dystrophin and laminin α-2 was similar to control muscle while staining for the dystrophin C-terminus was patchy. Utrophin was not increased. Numerous regenerating myofibers were highlighted with the antibody against developmental myosin heavy chain (dMHC). Staining for α- and γ-sarcoglycans was absent and decreased for β-sarcoglycan. B Western blotting confirmed all three sarcoglycans were absent. β-actin was used as loading control
Fig. 3
Fig. 3
Haplotypes in the region of interest on CFA9. SNP coordinates are provided along the top row. A pink cell indicates the minor allele and a white cell indicates the major allele. Identification numbers on the far left refer to the dogs within the pedigrees of Fig. 1. The CFA9 haplotype in which all 9 cases were homozygous spanned from 24,792,165–26,644,060 Mb. The affected haplotype is denoted with a red highlight (left side), unaffected haplotypes have a blue highlight, and gray haplotypes are identical to the affected haplotype but do not have the SGCA c.G224A mutation. The SGCA gene, located from positions (26,164,863–26,174,864 Mb), is indicated by an orange bar along the top

References

    1. Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve. 2018;58:167–177. doi: 10.1002/mus.26077. - DOI - PubMed
    1. Bushby KM, Beckmann JS. The limb-girdle muscular dystrophies--proposal for a new nomenclature. Neuromuscul Disord. 1995;5:337–343. doi: 10.1016/0960-8966(95)00005-8. - DOI - PubMed
    1. Leyva-Leyva M, Sandoval A, Felix R, Gonzalez-Ramirez R. Biochemical and functional interplay between ion channels and the components of the dystrophin-associated glycoprotein complex. J Membr Biol. 2018;251:535–550. doi: 10.1007/s00232-018-0036-9. - DOI - PubMed
    1. Mongini T, Doriguzzi C, Bosone I, Chiadò-Piat L, Hoffman EP, Palmucci L. Alpha-sarcoglycan deficiency featuring exercise intolerance and myoglobinuria. Neuropediatrics. 2002;33:109–111. doi: 10.1055/s-2002-32374. - DOI - PubMed
    1. Ceravolo F, Messina S, Rodolico C, Strisciuglio P, Concolino D. Myoglobinuria as first clinical sign of a primary alpha-sarcoglycanopathy. Eur J Pediatr. 2014;173:239–242. doi: 10.1007/s00431-013-2151-z. - DOI - PubMed