11 TOPS photonic convolutional accelerator for optical neural networks
- PMID: 33408378
- DOI: 10.1038/s41586-020-03063-0
11 TOPS photonic convolutional accelerator for optical neural networks
Abstract
Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis1-7. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (1012) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.
Comment in
-
Artificial intelligence accelerated by light.Nature. 2021 Jan;589(7840):25-26. doi: 10.1038/d41586-020-03572-y. Nature. 2021. PMID: 33408372 No abstract available.
References
-
- LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). - DOI
-
- Schalkoff, R. J. Pattern recognition. In Wiley Encyclopedia of Computer Science and Engineering (ed. Wah, B. W.) https://doi.org/10.1002/9780470050118.ecse302 (Wiley, 2007).
-
- Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015). - DOI
-
- Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017). - DOI
-
- Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources