Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan-Feb;105(1-2):39-44.
doi: 10.3109/00016488809119443.

Motility of outer hair cells as an active, actin-mediated process

Affiliations

Motility of outer hair cells as an active, actin-mediated process

H P Zenner. Acta Otolaryngol. 1988 Jan-Feb.

Abstract

The cochlea of the inner ear is no longer regarded exclusively as a passive mechanical signal analyser. Active mechanical processes are thought to influence the vibration pattern of the basilar membrane. The source of these active mechanical processes is sought in the outer hair cells (OHC). These auditory sensory cells contain actin and actin-associated structural elements. Recently, isolated OHC have been demonstrated to be capable of reversible longitudinal contractions in vitro, whose molecular mechanism could not be documented, however. Furthermore, following an increase in the intracellular Ca2+ level, isolated OHC showed longitudinal motile responses in the presence of ATP. We now report that the observed Ca2+/ATP induced mechanical events in OHC are active processes, that are driven by the hydrolytic energy of ATP. Moreover, motile responses are frequently associated with a movement of the cuticular plate, including the stereociliary bundle. Cytochalasin B, inorganic bisphosphate, trifluoperazine and antiactin inhibit the motile response. Thus, our results show that outer hair cells possess actin-dependent Ca2+ and calmodulin-controlled motor properties, so that potentially they can actively adjust the mechanical properties of the basilar membrane during auditory stimulation.

PubMed Disclaimer

Publication types

LinkOut - more resources