Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;51(4):413-426.
doi: 10.1080/00498254.2020.1867331. Epub 2021 Jan 12.

Pharmacokinetics, metabolism, and excretion of licogliflozin, a dual inhibitor of SGLT1/2, in rats, dogs, and humans

Affiliations

Pharmacokinetics, metabolism, and excretion of licogliflozin, a dual inhibitor of SGLT1/2, in rats, dogs, and humans

Lydia Wang-Lakshman et al. Xenobiotica. 2021 Apr.

Abstract

Absorption, metabolism, and excretion (AME) of licogliflozin, a sodium-glucose co-transporters (SGLTs) 1 and 2 inhibitor, were studied in male rats, dogs, and healthy male volunteers and reported.Oral absorption of licogliflozin was rapid (tmax < 1 h) with absorption estimated at 87%, 100% and 77% in rats, dogs and humans, respectively.Excretion of licogliflozin-related radioactivity was rapid and nearly complete following oral administration with total radioactivity recovery ranging from 73% in dogs, 92.5% in humans, to 100% in rats. Dose-related radioactivity was excreted in both urine and faeces with urinary excretion playing a slightly more important role in humans (∼56%) than in animal species (∼19-41%).Elimination of licogliflozin was predominantly via metabolism with the majority of the radioactivity dose (∼54-74%) excreted as metabolites across species.The principal biotransformation pathways involved direct glucuronidation and oxidation across all species. In humans, direct glucuronidation to M17 and M27 was the major pathway observed, accounting for ∼38% of the dose in excreta while oxidative metabolism also contributed to >29% of the dose in excreta. Oxidative pathways were predominant in animal species.

Keywords: AME; SGLT1/2 inhibitor; biotransformation; glucuronidation; oxidative metabolism.

PubMed Disclaimer

LinkOut - more resources