Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 15:765:144268.
doi: 10.1016/j.scitotenv.2020.144268. Epub 2020 Dec 24.

In vivo evaluation of Nano-palladium toxicity on larval stages and adult of zebrafish (Danio rerio)

Affiliations

In vivo evaluation of Nano-palladium toxicity on larval stages and adult of zebrafish (Danio rerio)

Pottanthara Ashokan Anila et al. Sci Total Environ. .

Abstract

The existence and usage of nano-sized palladium (nano-Pd) as catalytic promoters among industries and researchers have been laid a way to explore the release of nano-Pd particles into the aquatic environment, bio-accumulating in living organisms. However, the data on fate and toxicity in response to nano-Pd on aquatic organisms are very limited. Herein, we report the concentration-specific toxicity of nano-Pd in zebrafish (Danio rerio). Nano-Pd was synthesized and characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Dynamic Light Scattering (DLS) and Zeta potential. To determine the in vivo toxicity of nano-Pd, the 96 hpf larvae and the adult zebrafish were treated with two (22 and 0.4 ng/L) environmental relevant concentrations. High doses of nano-Pd influenced the hatching rate, embryo survival, heartbeat and teratological anomalies in the 96 hpf larvae. Reactive oxygen species (ROS) and apoptosis were also influenced by nano-Pd exposure while the acetylcholinesterase (AChE) activity was declined in a dose dependent manner. In long-term exposure (42 days), the adult fish showed erratic movements in swimming pattern inhibiting the AChE activity in both the concentrations of brain and liver. The antioxidant enzyme activity such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and lipid peroxidation (LPO), showed a significant change (P < 0.05) indicating that oxidative stress was induced by nano-Pd. Similarly, nano-Pd also induced histopathological lesions in gill, liver and brain providing an insight of fate and toxicity of nano-Pd in the aquatic environment. Our study contributes a significant mechanism to understand the toxicity concern of nano-Pd in the aquatic environment.

Keywords: Antioxidant enzymes; Embryonic malformation; Neurotoxicity; Palladium nanoparticle; ROS and apoptosis.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources